Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Investigation of solid-liquid phase diagrams of the sulfamethazine-salicylic acid co-crystal
Univ Limerick, Synth & Solid State Pharmaceut Ctr, Bernal Inst, Dept Chem Sci, Castletroy, Co Limerick, Ireland..
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Transport Phenomena. Univ Limerick, Synth & Solid State Pharmaceut Ctr, Bernal Inst, Dept Chem Sci, Castletroy, Co Limerick, Ireland..ORCID iD: 0000-0002-6647-3308
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Transport Phenomena. Univ Limerick, Synth & Solid State Pharmaceut Ctr, Bernal Inst, Dept Chem Sci, Castletroy, Co Limerick, Ireland..
2019 (English)In: CrystEngComm, ISSN 1466-8033, E-ISSN 1466-8033, Vol. 21, no 18, p. 2863-2874Article in journal (Refereed) Published
Abstract [en]

The influence of temperature and solvent on the solid-liquid phase diagram of the 1 : 1 sulfamethazinesalicylic acid co-crystal has been investigated. Ternary phase diagrams of this co-crystal system have been constructed in three solvents: methanol, acetonitrile and a 7 : 3 (v/v) dimethylsulfoxide-methanol mixture, at three temperatures. The system exhibits congruent dissolution in acetonitrile and the co-crystal solubility has been determined by a gravimetric technique. The Gibbs energy of co-crystal formation from the respective solid components has been estimated from solubility data, together with the corresponding enthalpic and entropic component terms. The Gibbs energy of formation ranges from -5.7 to -7.7 kJ mol -1, with the stability increasing with temperature. In methanol and the DMSO-methanol mixture, the co-crystal dissolves incongruently. It is shown that the solubility ratio of the pure components cannot be used to predict with confidence whether the co-crystal will dissolve congruently or incongruently. The size of the region where the co-crystal is the only stable solid phase is inversely related to the pure component solubility ratio of salicylic acid and sulfamethazine.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY , 2019. Vol. 21, no 18, p. 2863-2874
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-252602DOI: 10.1039/c9ce00124gISI: 000467736200015Scopus ID: 2-s2.0-85065525446OAI: oai:DiVA.org:kth-252602DiVA, id: diva2:1321972
Note

QC 20190610

Available from: 2019-06-10 Created: 2019-06-10 Last updated: 2019-06-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Svärd, MichaelRasmuson, Åke C.

Search in DiVA

By author/editor
Svärd, MichaelRasmuson, Åke C.
By organisation
Transport Phenomena
In the same journal
CrystEngComm
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 328 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf