Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Design and Implementation of Test bench for Rotating Power Electronics
KTH, School of Electrical Engineering and Computer Science (EECS).
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Wind Power Technology has accelerated the shift towards renewable resources in an ef­fort to reduce the greenhouse gas emissions due to electricity production. However, the performance of the turbines is limited by the usage of slip rings in the conventional con­figurations such as the wound rotor and the doubly-fed induction generators. Maintenance costs of the carbon brushes deteriorates the reliability of the machine making the operation of wind turbines in remote locations even more difficult. Novel Brush-less topologies such as the WRIM-RPEC (Wound Rotor Induction Machine with Rotating Power Electronic Converter) were introduced, where the the power electronic components are rotating on the shaft at the rotor side. Thus, all the disadvantages of the conventional machines have been overcome without the usage of slip rings in the new configuration. However, the reliability of the existing electrical components under rotating conditions has not been investigated in great detail to support the novel approach. This thesis aimed to develop a test set-up for rotating power electronics compo­nents, in order to test their reliability in rotating conditions. The aim was to create a flexible design that accommodates for the testing of different components (IGBTs, MOS­FETs, capacitors, etc.) and sensors (PT, vibration, etc) under high centripetal acceleration. A mechanical enclosure was developed for hosting a rectifier, DC link bus and an IGBT module. The enclosure was designed to be rotated by an electrical machine driven by an ABB industrial Machine Drive. Initial experiments were made at maximum speed of 1050 RPM at 924 Gs to ensure the proper functioning of the rotating enclosure. The devices inside the enclosure can be tested at 60 Amps and 340 Volts under the mentioned accel­eration. Wireless communication interface is also established between master and slave controllers for gate driving the semiconductor switches inside the enclosure. In the end, measurements were taken to compare the performance of components in stationary and rotary conditions. In the future, the set-up can be used to conduct various types of studies such as thermal, vibrational and fatigue analysis on different components from diverse companies to investigate their performance in rotary conditions.

Abstract [sv]

Vindkrafttekniken har paskyndat overgangen till fomybara resurser for att minska utslapp av vaxthusgaser fran elproduktion. Turbinemas prestanda begransas dock vid genera­torlosningar som nyttjar slapringar vilket inkluderar dubbelmatade asynkrongeneratorer. Underhfill av kolborstama forsamrar generatom tillganglighet vilket forsvarar driften av vindkraftverk i mycket avlagsna platser. Borstlosa topologier sasom WRIM-RPEC (wound rotor induction machine with rotating power electronic converter) har nyligen introducerat i vilken elektriska komponenter roterar med rotoraxeln. Sfiledes har manga nackdelar med en konventionell generatorlosning undvikits. Tillforlitligheten hos de befintliga elektron­iska komponentema under roterande forhfillanden har emellertid inte undersokts i detalj. Syftet med detta examensarbete ar att utveckla en testuppsattning for roterande kraftelektronikkomponenter for att testa deras tillforlitlighet under roterande forhllanden. Malet ar att skapa en flexibel design for testandet av olika komponenter (IGBTs, MOS­FETs, kondensatorer, etc.) och sensorer (PT, vibration, etc.) under hog centripetalaccel­eration. Ett mekaniskt holje har utvecklats innehfillande en likriktare, DC-mellanled och en IGBT-modul. Holjet utformades sa att det kunde roteras av en konventionell elmotor. De forsta experimenten utfordes med en maximal hastighet av 1050 rpm vid 924 g for att sakerstfilla att det roterande holjet fungerade ordentligt. Provobjekten inuti holjet kan tes­tas vid maximmalt 60 A och 340 V. Ett tradlost kommunikationsgranssnitt mellan master­och slavecontrollers for den gatekrets som driver halvledaromkopplama inuti holjet har tagits fram. I slutet av projektet genomfordes matningar for att jamfora komponenter­nas prestanda i stationara och roterande forhfillanden. I framtiden kan denna uppstfillning anvandas for att genomfora olika typer av studier sasom termisk, vibrations- och utmat­tningsanalys under rotation av olika komponenter i en kraftelektronisk omriktare.

Place, publisher, year, edition, pages
2019. , p. 46
Series
TRITA-EECS-EX ; 2018:568
Keywords [en]
Duty Cycle, G-force, gate driver, IGBT, resonance, slip-ring, wireless-interfacing, WRIM-RPEC
Keywords [sv]
Duty Cycle, G-kraft, grindforare, IGBT, resonans, slap-ring, tradlost granssnitt, WRIM-RPEC
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-253044OAI: oai:DiVA.org:kth-253044DiVA, id: diva2:1323575
External cooperation
ABB
Educational program
Master of Science - Electric Power Engineering
Supervisors
Examiners
Available from: 2019-06-12 Created: 2019-06-12 Last updated: 2019-06-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
School of Electrical Engineering and Computer Science (EECS)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 216 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf