Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Magnetospheric Multiscale Observations of ULF Waves and Correlated Low-Energy Ion Monoenergetic Acceleration
Show others and affiliations
2019 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402Article in journal (Refereed) Published
Abstract [en]

Low-energy ions of ionospheric origin with energies below 10s of electron volt dominate most of the volume and mass of the terrestrial magnetosphere. However, sunlit spacecraft often become positively charged to several 10s of volts, which prevents low-energy ions from reaching the particle detectors on the spacecraft. Magnetospheric Multiscale spacecraft (MMS) observations show that ultralow-frequency (ULF) waves drive low-energy ions to drift in the E × B direction with a drift velocity equal to V E × B , and low-energy ions were accelerated to sufficient total energy to be measured by the MMS/Fast Plasma Investigation Dual Ion Spectrometers. The maximum low-energy ion energy flux peak seen in MMS1's dual ion spectrometer measurements agreed well with the theoretical calculation of H + ion E × B drift energy. The density of ions in the energy range below minimum energy threshold was between 1 and 3 cm −3 in the magnetosphere subsolar region in this event.

Place, publisher, year, edition, pages
Blackwell Publishing Ltd , 2019.
Keywords [en]
E × B, low-energy ion, MMS, monoenergetic acceleration, ultralow-frequency wave
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:kth:diva-252232DOI: 10.1029/2018JA026372ISI: 000477707800031Scopus ID: 2-s2.0-85065024814OAI: oai:DiVA.org:kth-252232DiVA, id: diva2:1324714
Note

QC 20190614

Available from: 2019-06-14 Created: 2019-06-14 Last updated: 2019-08-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Lindqvist, Per-Arne

Search in DiVA

By author/editor
Lindqvist, Per-Arne
By organisation
Space and Plasma Physics
In the same journal
Journal of Geophysical Research - Space Physics
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 36 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf