Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Peer-to-peer content sharing techniques for energy efficiency in wireless networks with fast channel variations
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Radio Systems Laboratory (RS Lab).
2013 (English)In: Green Networking and Communications: ICT for Sustainability, CRC Press , 2013, p. 3-28Chapter in book (Other academic)
Abstract [en]

According to the International Telecommunication Union, information and communication technology (ICT) was emitting 0.83 GtCO2e (gigatons of carbon dioxide equivalent), contributing to around 2%-2.5% of global greenhouse gas (GHG) emissions in 2007 [1]. With the continuous growth of ICT, especially in developing countries, the GHG emissions are expected to grow at double the rate over the next 10 years [1]. The Global e-Sustainability Initiative research is estimating a 72% increase in ICT energy usage from 2007 to 2020 with around 1.43 GtCO2e emissions in 2020 [1]. In addition, the telecommunications industry is witnessing an explosive increase in data traffic especially with the introduction of wireless modems and smart phones and with the presence of more than one billion wireless subscribers today. The data traffic volume is increasing by a factor of 10 every 5 years, leading to an increase of 16%-20% in energy consumption every 5 years [2]. For instance, in India, the mobile telecom industry is considered the fastest-growing sector with 584.3 million subscribers in 2010-2011 with an annual growth rate of 49.15%. It is estimated that the energy consumption of the Indian Mobile Telecom Industry was 163 PJ (petajoules) with 52.66 million tons emissions of carbon dioxide (CO2) in 2010-2011 [3]. A user who travels a distance of 25 km using public transport such as car or train can result in 1.22 kg of CO2 emissions, compared to 0.11 kg of CO2 emissions for 1 hour of video conferencing with two laptops [4]. A talk of 2 minutes per day on the phone can produce 47 kg CO2e (equivalent) per year, with a total of 125 million tons of CO2e produced by mobile phones in 1 year [5]. 

Place, publisher, year, edition, pages
CRC Press , 2013. p. 3-28
Keywords [en]
Carbon dioxide, Developing countries, Energy efficiency, Energy utilization, Gas emissions, Global system for mobile communications, Growth rate, Peer to peer networks, Smartphones, Telecommunication industry, Telephone sets, Video conferencing, Wireless networks, Annual growth rate, Channel variations, E-sustainability, Information and Communication Technologies, International telecommunication unions, Public transport, Telecommunications industry, Wireless subscribers, Greenhouse gases
National Category
Bioenergy
Identifiers
URN: urn:nbn:se:kth:diva-246587DOI: 10.1201/b15571Scopus ID: 2-s2.0-85054287195OAI: oai:DiVA.org:kth-246587DiVA, id: diva2:1324772
Note

QC 20190614

Available from: 2019-06-14 Created: 2019-06-14 Last updated: 2019-06-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Atat, Rachad
By organisation
Radio Systems Laboratory (RS Lab)
Bioenergy

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 150 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf