Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cluster observations of energetic electrons and electromagnetic fields within a reconnecting thin current sheet in the Earth's magnetotail
Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.ORCID iD: 0000-0003-1654-841x
Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
Show others and affiliations
2008 (English)In: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 113, no A12, article id A12215Article in journal (Refereed) Published
Abstract [en]

We study the acceleration of energetic electrons during magnetotail reconnection by using Cluster simultaneous measurements of three-dimensional electron distribution functions, electric and magnetic fields, and waves in a thin current sheet. We present observations of two consecutive current sheet crossings where the flux of electrons 35 127 keV peaks within an interval of tailward flows. The first crossing shows the signatures of a tailward moving flux rope. The observed magnetic field and density indicate that the flux rope was very dynamic, and a comparison with numerical simulation suggests a crossing right after coalescence of smaller flux ropes. The second crossing occurs within the ion diffusion region. The flux of electrons is largest within the flux rope where they are mainly directed perpendicular to the magnetic field. At the magnetic separatrices, the fluxes are smaller, but the energy spectra are harder and electrons are mainly field aligned. Reconnection electric fields E-Y similar to 7 mV/m are observed within the diffusion region, whereas in the flux rope, EY are much smaller. Waves around lower hybrid frequency do not show a clear correlation with energetic electrons. We interpret the field-aligned electrons at the separatrices as directly accelerated by the reconnection electric field in the diffusion region, whereas we interpret the perpendicular electrons as trapped within the flux rope and accelerated by a combination of betatron acceleration with nonadiabatic pitch-angle scattering. Our observations indicate that thin current sheets during dynamic reconnection are important for in situ production of energetic electrons and that simultaneous measurements of electrons and electromagnetic fields within thin sheets are crucial to understand the acceleration mechanisms.

Place, publisher, year, edition, pages
2008. Vol. 113, no A12, article id A12215
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-253624DOI: 10.1029/2008JA013511ISI: 000262044400001OAI: oai:DiVA.org:kth-253624DiVA, id: diva2:1325458
Note

QC 20190617

Available from: 2019-06-15 Created: 2019-06-15 Last updated: 2019-06-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Vaivads, Andris

Search in DiVA

By author/editor
Vaivads, Andris
In the same journal
Journal of Geophysical Research
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf