Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Simultaneous Multispacecraft Probing of Electron Phase Space Holes
Show others and affiliations
2018 (English)In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 21, p. 11,513-11,519Article in journal (Refereed) Published
Abstract [en]

We present a series of electron holes observed simultaneously on four Magnetospheric Multiscale spacecraft in the plasma sheet boundary layer. The multispacecraft probing shows that the electron holes propagated quasi-parallel to the local magnetic field with velocities of a few thousand kilometers per second with parallel spatial scales of a few kilometers (a few Debye lengths). The simultaneous multispacecraft probing allows analyzing the 3-D configuration of the electron holes. We estimate the electric field gradients and charge densities associated with the electrons holes. The electric fields are fit to simple 3-D electron hole models to estimate their perpendicular scales and demonstrate that the electron holes were generally not axially symmetric with respect to the local magnetic field. We emphasize that most of the electron holes had a complicated structure not reproduced by the simple models widely used in single-spacecraft studies.

Place, publisher, year, edition, pages
Blackwell Publishing Ltd , 2018. Vol. 45, no 21, p. 11,513-11,519
Keywords [en]
electron phase space holes, inner magnetosphere, multispacecraft observations, three-dimensional structure of electron holes, Boundary layers, Electric fields, Magnetic fields, Magnetosphere, Phase space methods, Plasma sheaths, Complicated structures, Electric field gradients, Electron hole, Magnetospheric multi scale, Phase-space hole, Plasma sheet boundary layer, Electrons, electromagnetic field, electron, observational method, plasma, spacecraft, three-dimensional modeling
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-247050DOI: 10.1029/2018GL079044ISI: 000451832600001Scopus ID: 2-s2.0-85056192766OAI: oai:DiVA.org:kth-247050DiVA, id: diva2:1330094
Note

QC 20190625

Available from: 2019-06-25 Created: 2019-06-25 Last updated: 2019-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Lindqvist, Per-Arne

Search in DiVA

By author/editor
Lindqvist, Per-Arne
By organisation
Space and Plasma Physics
In the same journal
Geophysical Research Letters
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf