Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
AOCS design for the ATHENA X-ray telescope: challenges and solutions
KTH.
2018 (English)In: CEAS Space Journal, ISSN 1868-2502, E-ISSN 1868-2510, Vol. 10, no 4, p. 519-534Article in journal (Refereed) Published
Abstract [en]

The ATHENA—Advanced Telescope for High-ENergy Astrophysics—mission is currently assessed in a phase A feasibility study as L-class mission in ESA’s Cosmic Vision 2015–2025 plan, with launch foreseen in 2028. Primary mission goal is the mapping of hot gas structures and the determination of their physical properties to search for supermassive black holes. ATHENA is an X-ray telescope with a focal length of 12 m. It has a mass of ~ 7000 kg and it is ~ 15 m high with a diameter of ~ 3 m. The main mass is distributed to the mirror on the one side of the spacecraft and to the science instrument module on the other side of the spacecraft. To achieve its science goals, ATHENA performs a sky survey with precision line-of-sight pointing requirements in the order of arc seconds for absolute pointing and sub-arc seconds for relative pointing in time windows > 1 ks, all at 95% confidence level. That is very demanding for large X-ray telescopes. In addition to the precision pointing requirements, ATHENA cannot violate a certain sun exclusion zone. This is a hard constraint to prevent any stray-light falling onto the instruments, as it would immediately destroy them. The sky survey is defined by an observation plan that is demanding in terms of availability and thus spacecraft agility. The pointing and agility requirements and the fact that ATHENA is a spacecraft with high mass and volume introduce several design challenges for the attitude and orbit control system. This paper presents those challenges, corresponding solutions, and preliminary results, which have been achieved during the phase A study led by Airbus in Friedrichshafen, Germany. The main focus and contribution of this paper are the identification of research and development needs for attitude and orbit control systems to enable the ATHENA mission. In this respect, the ATHENA design challenges are discussed and addressed with the state-of-the-art design methods. This paper concludes with the main identified technology development needs and formulates specific research questions related to practical design problems. In particular, the following attitude and orbit control system design challenges are addressed: autonomous and agile large angle slew manoeuvres with exclusion zones, availability for science observations, precision line-of-sight determination as well as analysis during the design process using the ESA Pointing Error Engineering Tool and pointing control with a hexapod as line-of-sight actuator in the control loop. The last challenge, namely, the hexapod in the control loop, is without precedence in Europe and to the best knowledge of the authors in the world.

Place, publisher, year, edition, pages
Springer-Verlag Wien , 2018. Vol. 10, no 4, p. 519-534
Keywords [en]
Agile slew manoeuvres, Autonomous slew manoeuvres, Fault management, Hexapod control for space applications, Hexapod model for space applications, High accuracy pointing error engineering, Precision pointing control, Agile manufacturing systems, Cosmology, Design, Identification (control systems), Orbits, Precision engineering, Space applications, Space flight, Spacecraft equipment, Stray light, Surveys, Telescopes, X rays, High accuracy pointing, Availability
National Category
Other Engineering and Technologies
Identifiers
URN: urn:nbn:se:kth:diva-247013DOI: 10.1007/s12567-018-0213-9ISI: 000451757300005Scopus ID: 2-s2.0-85057803120OAI: oai:DiVA.org:kth-247013DiVA, id: diva2:1330812
Note

QC 20190626

Available from: 2019-06-26 Created: 2019-06-26 Last updated: 2019-06-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Görries, Simon

Search in DiVA

By author/editor
Görries, Simon
By organisation
KTH
In the same journal
CEAS Space Journal
Other Engineering and Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf