Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparison of different solutions for emergency and standby power systems for commercial consumers
KTH, School of Electrical Engineering (EES), Electric Power Systems.
KTH, School of Electrical Engineering (EES), Electric Power Systems.ORCID iD: 0000-0002-8189-2420
2006 (English)In: INTELEC 2006: 28th Annual International Telecommunications Energy Conference, 2006Conference paper, Published paper (Refereed)
Abstract [en]

In this paper a new improved method to evaluate the design of commercial power systems is described. The power system is divided into seven design criteria and each criterion Is evaluated separately. The aim with the method is to identify problems with the present design which can be modified to improve the performance of the system. The method is applied to four sensitive commercial consumers: substation; hospital; voice and data communication facility; and data center. They are all equipped with emergency and standby power systems. Different requirements and solutions for each systems are analyzed and presented. The study shows that the voice and data communication facility and especially the data center both have possibilities of improvements. The data center power systems has a potential to improve the efficiency, and therefore also to reduce the energy cost, improve the availability, and to use the local energy source and energy storage to sell power to the utility grid during peak load.

Place, publisher, year, edition, pages
2006.
Series
International Telecommunications Energy Conference-INTELEC, ISSN 0275-0473
Keyword [en]
Consumer electronics, Cost effectiveness, Data communication systems, Electric substations, Energy utilization, Voice/data communication systems, Commercial consumers, Commercial power systems
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-8095DOI: 10.1109/INTLEC.2006.251673ISI: 000245995800015Scopus ID: 2-s2.0-42749104145ISBN: 1-4244-0430-4 (print)OAI: oai:DiVA.org:kth-8095DiVA: diva2:13324
Note
QC 20100908Available from: 2008-03-10 Created: 2008-03-10 Last updated: 2010-09-08Bibliographically approved
In thesis
1. Modeling, Control and Protection of Low-Voltage DC Microgrids
Open this publication in new window or tab >>Modeling, Control and Protection of Low-Voltage DC Microgrids
2008 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Current trends in electric power consumption indicate an increasing use of dc in end-user equipment, such as computers and other electronic appliances used in households and offices. With a dc power system, ac/dc conversion within these loads can be avoided, and losses reduced. AC/DC conversion is instead centralized, and by using efficient, fully controllable power-electronic interfaces, high power quality for both ac and dc systems during steady state and ac grid disturbances can be obtained. Connection of back-up energy storage and small-size generation is also easier to realize in a dc power system.

To facilitate practical application, it is important that the shift from ac to dc can be implemented with minimal changes. Results from measurements carried out on common household appliances show that most loads are able to operate with dc supply without any modifications. Furthermore, simple, and yet sufficiently accurate, load models have been derived using the measurement results. The models have been used for further analysis of the dc system, both in steady state and during transients.

AC microgrids have gained research interest during the last years. A microgrid is a part of power systems which can operate both connected to the ac grid, and autonomously in island mode when the loads are supplied from locally distributed resources. A low-voltage dc microgrid can be used to supply sensitive electronic loads, since it combines the advantages of using a dc supply for electronic loads, and using local generation to supply sensitive loads. An example of a commercial power system which can benefit from using a dc microgrid is data center. The lower losses due to fewer power conversion steps results in less heat which need to be cooled, and therefore the operation costs are lowered.

To ensure reliable operation of a low-voltage dc microgrid, well-designed control and protection systems are needed. An adaptive controller is required to coordinate the different resources based on the load-generation balance in the microgrid, and status of the ac grid. The performance of the developed controller has been studied and evaluated through simulations. The results show that it is possible to extend use of the data center dc microgrid to also support a limited amount of ac loads close to the data center, for example an office building.

A protection-system design for low-voltage dc microgrids has been proposed, and different protection devices and grounding methods have been presented. Moreover, different fault types and their impact on the system have been analyzed. The type of protection that can be used depends on the sensitivity of the components in the microgrid. Detection methods for different components have been suggested in order to achieve a fast and accurate fault clearing.

An experimental small-scale dc power system has been used to supply different loads, both during normal and fault conditions. A three-phase two-level voltage source converter in series with a Buck converter was used to interconnect the ac and the dc power systems. Together the converters have large controllability, high power quality performance, and allow bi-directional power flow. This topology can preferably be used together with energy storage. The tests confirm the feasibility of using a dc power system to supply sensitive electronic loads.

Place, publisher, year, edition, pages
Stockholm: KTH, 2008. xiv, 52 p.
Series
Trita-EE, ISSN 1653-5146 ; 2008:007
Keyword
circuit transient analysis, dc power systems, dispersed storage and generation, load modeling, power conversion, power distribution control, power distribution faults, power distribution protection, power electronics
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-4666 (URN)978-91-7178-867-2 (ISBN)
Public defence
2008-04-04, H1, Teknikringen 33, Stockholm, 10:00
Opponent
Supervisors
Note
QC 20100908Available from: 2008-03-10 Created: 2008-03-10 Last updated: 2010-09-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Söder, Lennart

Search in DiVA

By author/editor
Salomonsson, DanielSöder, Lennart
By organisation
Electric Power Systems
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 87 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf