Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
FR8RAIL Y25 running gear for high tonnage and speed
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles.ORCID iD: 0000-0002-4477-971X
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles.ORCID iD: 0000-0002-6346-6620
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles.ORCID iD: 0000-0003-1583-4625
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles.ORCID iD: 0000-0002-8237-5847
2019 (English)In: Proceeedings of the International Heavy Haul Association STS Conference 2019 / [ed] P.O. Larsson-Kråik, A. Ahmadi, Narvik, 2019, p. 690-697Conference paper, Published paper (Refereed)
Abstract [en]

The rolling stock in railway freight transport has traditionally been mainly characterised by lowcost, long lifetime of the fleet, and relatively low requirements on running behaviour. However, the sector inEurope has acknowledged that in order to be competitive there is a need to develop more advanced wagons thatenable to maximise payload and speed in different scenarios, while reducing the overall system costs, includingwheelset and track deterioration. In the Shift2Rail project FR8RAIL, a consortium of wagon manufacturers,wheelset manufacturers, and research centres has worked to develop a new generation of the widely used robustY25 freight running gear, that minimises maintenance costs both on the vehicle and the track by improving thecurving performance and hunting stability. The dynamic behaviour of the proposed solutions has been studiedwith simulations-based EN14363 tests up to 30 tons/axle, and their expected impact on wheel wear and fatiguehas also been predicted, with satisfactory results regarding both damage modes.

Place, publisher, year, edition, pages
Narvik, 2019. p. 690-697
National Category
Vehicle Engineering
Research subject
Järnvägsgruppen - Fordonsteknik
Identifiers
URN: urn:nbn:se:kth:diva-255024ISBN: 9780911382709 (print)ISBN: 9780911382716 (electronic)OAI: oai:DiVA.org:kth-255024DiVA, id: diva2:1337288
Conference
International Heavy Haul Association STS Conference, on the 10th – 14th June 2019, in Narvik, Norway.
Funder
EU, Horizon 2020, 730617
Note

QC 20190827

Available from: 2019-07-12 Created: 2019-07-12 Last updated: 2019-12-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Conference proceedings

Authority records BETA

Hossein Nia, SaeedCasanueva, CarlosStichel, Sebastian

Search in DiVA

By author/editor
Krishna, Visakh VHossein Nia, SaeedCasanueva, CarlosStichel, Sebastian
By organisation
Rail Vehicles
Vehicle Engineering

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 114 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf