Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Transparent Wood for Thermal Energy Storage and Reversible Optical Transmittance
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
KTH, School of Engineering Sciences (SCI), Applied Physics.
Show others and affiliations
2019 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 22, p. 20465-20472Article in journal (Refereed) Published
Abstract [en]

Functional load-bearing materials based on phase-change materials (PCMs) are under rapid development for thermal energy storage (TES) applications. Mesoporous structures are ideal carriers for PCMs and guarantee shape stability during the thermal cycle. In this study, we introduce transparent wood (TW) as a TES system. A shape-stabilized PCM based on polyethylene glycol is encapsulated into a delignified wood substrate, and the TW obtained is fully characterized; also in terms of nano- and mesoscale structures. Transparent wood for thermal energy storage (TW-TES) combines large latent heat (similar to 76 J g(-1)) with switchable optical transparency. During the heating process, optical transmittance increases by 6% and reaches 68% for 1.5 mm thick TW-TES. Characterization of the thermal energy regulation performance shows that the prepared TW-TES composite is superior to normal glass because of the combination of good heat-storage and thermal insulation properties. This makes TW-TES composites interesting candidates for applications in energy-saving buildings.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2019. Vol. 11, no 22, p. 20465-20472
Keywords [en]
wood, encapsulation, phase-change material, energy storage, biocomposite
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-254507DOI: 10.1021/acsami.9b05525ISI: 000470938500088PubMedID: 31062954OAI: oai:DiVA.org:kth-254507DiVA, id: diva2:1337441
Note

QC 20190715

Available from: 2019-07-15 Created: 2019-07-15 Last updated: 2019-07-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Montanari, CelineLi, YuanyuanChen, HuiYan, MaxBerglund, Lars A.
By organisation
Wallenberg Wood Science CenterFibre- and Polymer TechnologyApplied Physics
In the same journal
ACS Applied Materials and Interfaces
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 24 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf