Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The influence of initial gold nanoparticles layer on migration of silver nanoparticles in silver/glass matrix
Show others and affiliations
2019 (English)In: Thin Solid Films, Vol. 685, p. 216-224Article in journal (Refereed) Published
Abstract [en]

A thin layer of gold nanoparticles (AuNPs) was deposited on glass substrates followed by subsequent deposition of silver nanoparticles (AgNPs) on it. Both AuNPs and AgNPs layers were fabricated by DC magnetron sputtering with inert gas condensation technique. The effect of initial thin layer of AuNPs have on the transformation of AgNPs surface structure by post annealing at 500 degrees C and 600 degrees C in air was investigated. The influence of post annealing temperature on the surface morphology was studied by atomic force microscopy and post annealing at 500 degrees C reduce the size of AgNPs along with the formation of some AgNPs inside the glass matrix. At 600 degrees C, aggregation of AuNPs on the surface was observed and increased in the number of AgNPs that diffused into the glass matrix. X-ray photoelectron spectroscopy was employed to study the surface composition and chemical states. The temperature dependence of Ag diffusion into the glass matrix was characterised and observed by UV-visible absorption spectroscopy and cross sectional transmission electron microscopy. Furthermore, ultraviolet photoelectron spectroscopy revealed a new shoulder related to Au 6 s hybridized with Au 5d and Ag 4d bands in the 1-4 eV regions, which affirmed the metallic character of AgNPs/AuNPs/glass system at higher annealing temperature. By introducing AuNPs on glass prior to AgNPs deposition, novel properties such as limited Ag ion diffusion and evaporation were found and problems previously encountered in AgNPs/glass system were avoided. The proposed AgNPs/AuNPs/glass system can be useful in plasmonic applications such as chroma filters and photonic devices.

Place, publisher, year, edition, pages
Elsevier , 2019. Vol. 685, p. 216-224
Keywords [en]
Silver nanoparticles; Gold nanoparticles; Inert gas condensation; Aggregation; Nanocomposites; Surface and bulk
National Category
Nano Technology
Research subject
Physics
Identifiers
URN: urn:nbn:se:kth:diva-255146DOI: 10.1016/j.tsf.2019.06.025ISI: 000476884100029Scopus ID: 2-s2.0-85067853991OAI: oai:DiVA.org:kth-255146DiVA, id: diva2:1338271
Note

QC 20190827

Available from: 2019-07-21 Created: 2019-07-21 Last updated: 2019-08-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Dutta, Joydeep

Search in DiVA

By author/editor
Dutta, Joydeep
By organisation
Materials and Nanophysics
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 22 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf