Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cathodic reactions on an iron RDE in the presence of Y(III)
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0001-5816-2924
2008 (English)In: Journal of the Electrochemical Society, ISSN 0013-4651, Vol. 155, no 10, E136-E142 p.Article in journal (Refereed) Published
Abstract [en]

During electrolysis of a solution containing Y(III) ions, a hydrous Y(OH)(3) film forms in the alkaline layer close to a hydrogen-evolving cathode. The film hinders the reduction of dissolved oxygen and activates the reduction of water, hydrogen evolution. The ability to hinder certain reactions while catalyzing hydrogen evolution may be useful in electrolysis applications. In this work the electrochemical properties of an in situ formed yttrium-hydroxide film were studied on an iron rotating disk electrode (RDE) in 0.5 M NaCl with addition of YCl3, NaClO, and of NaNO3. It was found that the film also hinders the reduction of protons, hypochlorite ions, and nitrate ions. At low concentration of Y(III) or at high current density, when the hydrogen evolution was vigorous, no activation of hydrogen evolution was observed. Under these conditions the film still hindered the reduction of ions. The reactant in the catalyzed hydrogen evolution reaction is most likely water molecules within the hydrous film. Nitrate ions were easily reduced on an iron cathode when no Y(III) ions were present in the solution. When studying effects of yttrium addition to a chloride solution the use of YCl3, rather than Y(NO3)(3), as Y(III) source is recommended.

Place, publisher, year, edition, pages
2008. Vol. 155, no 10, E136-E142 p.
Keyword [en]
Concentration (process), Current density, Disks (machine components), Dissolution, Dissolved oxygen, Electrochemical properties, Electrochemistry, Electrolysis, Hydrogen, Ions, Nitrates, Nonmetals, Oxygen, Reduction, Rotating disks, Sodium chloride, Yttrium, Applications., Cathodic reactions, Chloride solutions, High current densities, Hydrogen evolution, Hydrogen evolution reaction, In-situ, Low concentrations, Nitrate ions, NO activation, Reduction of protons, Rotating disk electrode, Water molecules, Yttrium addition
National Category
Inorganic Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-8150DOI: 10.1149/1.2958299ISI: 000258976500042Scopus ID: 2-s2.0-51849102885OAI: oai:DiVA.org:kth-8150DiVA: diva2:13396
Note
20100901. Uppdaterad från submitted till published (20100901).Available from: 2008-03-27 Created: 2008-03-27 Last updated: 2012-05-30Bibliographically approved
In thesis
1. Influence of the electrolyte on the electrode reactions in the chlorate process
Open this publication in new window or tab >>Influence of the electrolyte on the electrode reactions in the chlorate process
2008 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

The chlorate process is very energy intensive and a major part of the production costs are for electrical energy. Since the electricity prices are constantly increasing and may also vary periodically, the chlorate plants may be forced to adjust their production rate to the price at each moment in order to minimise their costs. Variation of current load requires increased knowledge regarding the electrode behaviour in a wide current range. In this thesis, the aim was to study the impact of the electrolyte on the electrode reactions in order to reduce the energy consumption. The work has mainly been experimental and additionally mathematical modelling has been carried out. A wide current range has been investigated in order to increase the understanding of the phenomena and to obtain results useful for low-load operation during the periods of high electricity cost.

To operate the anode as energy efficiently as possible, the anode potential should not exceed the critical potential (Ecr), where the slope of the anodic polarisation curve increases, most likely due to ruthenium(VIII)-formation, and where the side reaction of oxygen evolution increases. In this work, the influence of different electrolyte parameters on Ecr has been studied. It was shown that a higher chloride concentration and an increased temperature lowered Ecr, which was expected to increase the risk of exceeding Ecr. However, this was not observed due to a simultaneous favouring of the chloride oxidation. Hence it was concluded that the electrolyte parameters should be optimised so that the lowest possible anode potential is obtained, which would enable higher current densities without exceeding Ecr. A further conclusion is that the increased slope of the polarisation curve at Ecr was possibly related to the lower activity for chloride oxidation on ruthenium oxidised to ruthenium(VIII).

At full-load operation, the cathode potential was shown to be rather independent of the electrolyte composition despite a large variation of electrolyte parameters. The cathode composition appears to be more critical than the electrolyte composition when aiming at reducing the energy consumption. A strategy to increase the cathode activity could be to in situ apply a catalytic film onto the electrode surface. Therefore, Y(III) was added to a chloride electrolyte in order to form a yttrium hydroxide film on the alkaline cathode surface during hydrogen evolution. The yttrium-hydroxide film activated reduction of water (hydrogen evolution) and hindered hypochlorite reduction, proton reduction and nitrate reduction. The inhibiting properties are important for the prevention of side reactions, which currently are avoided by reducing Cr(VI) of the electrolyte on the cathode, producing an inhibiting chromium-hydroxide film. The studies on Y(III) increase the expectations for finding alternatives to the toxic Cr(VI).

The addition of chromate to the chlorate electrolyte gives a high cathodic current efficiency and chromate has buffering properties in the electrolyte. The role of the buffer has been investigated for the oxygen evolution from water (one possible anodic side reaction), as well as cathodic hydrogen evolution. Models have been developed for these systems to increase the understanding of the interaction between buffer, electrode reactions and mass transport; the results have been verified experimentally. The chromate buffer increased the limiting current significantly for the cathodic H+ reduction and the cathodic overpotential was reduced drastically at currents lower than the limited current. A too low overpotential could result in the cathodic protection being lost. The presence of chromate buffer increased the limiting current for the oxygen evolution from OH-. The modelling of these systems revealed that the homogeneous reactions connected to the electrode reactions were not in equilibrium at the electrode surface. Further, a good resolution of the interface at the electrode surface was crucial since the, for the electrode reactions, important buffering takes place in an nm-thick reaction layer.

Abstract [sv]

Framställning av klorat är mycket energiintensiv och kräver stora mängder elenergi. Stigande elpriser, som dessutom ofta varierar under dygnet eller säsongsvis, gör att man vill reducera onödiga förluster samt ibland försöka anpassa produktionen så att man när elpriset är högt minskar den, för att sedan öka produktionen igen då elpriset sjunker. Denna flexibla drift kräver ny kunskap om hur elektroderna beter sig i ett större strömintervall än vad som tidigare varit av intresse. Målet med detta arbete var att, med fokus på elektrolytens betydelse, identifiera möjliga förbättringar för kloratprocessen och därmed minska energiförbrukningen. Studierna har i huvudsak varit experimentella men även matematisk modellering har använts. Ett brett strömintervall har undersökts för att bättre förstå fenomenen och för att även kunna använda resultaten då höga elpriser gör att man vill köra processen vid lägre laster än normalt.

För att driften av anoden ska vara så energieffektiv som möjligt bör anodpotentialen inte överskrida den kritiska potentialen (Ecr), där den anodiska polarisationskurvan får en högre lutning (troligtvis pga Ru(VIII)-bildning) och bireaktionen syrgasutveckling ökar. I detta arbete har påverkan av olika elektrolytparametrar på Ecr undersökts. Det visade sig att en ökad kloridkoncentration och ökad temperatur sänkte Ecr. Trots att detta borde göra att Ecr lättare överskrids, blev inte detta fallet eftersom kloridoxidationen samtidigt gynnades. Slutsatsen blir därför att elektrolytparametrarna bör optimeras så att lägsta möjliga anodpotential uppnås, vilket då även gör att strömtätheten kan ökas utan att Ecr överskrids. Slutsatsen är vidare att polarisationskurvans högre lutning vid Ecr kan ha att göra med att rutenium oxiderat till rutenium(VIII) har lägre aktivitet för kloridoxidation.

Vid full last visade sig katodens potential vara relativt oberoende av elektrolytsammansättningen trots att denna varierades kraftigt. Katodens sammansättning verkar vara viktigare att ta hänsyn till än elektrolytens för kunna åstadkomma en större energibesparing. Ett alternativ till att öka katodens aktivitet skulle vara att in-situ belägga elektrodytan med en katalytisk film. Försök gjordes att sätta till Y(III) till kloridelektrolyt för att under vätgasutveckling fälla ut en yttriumhydroxidfilm på den alkaliska katodytan. Yttriumhydroxidfilmen aktiverade vattenreduktion (vätgasutveckling) och inhiberade hypokloritreduktion, protonreduktion och nitratreduktion. De inhiberande egenskaperna är viktiga för att förhindra bireaktioner, vilka idag hindras av att Cr(VI) i elektrolyten reduceras på katoden och bildar en hindrande kromhydroxidfilm. Försöken med Y(III) visar att det finns goda möjligheter att hitta alternativ till det miljöfarliga Cr(VI).

Kromattillsatsen i kloratelektrolyt ger förutom ett högt katodiskt strömutbyte även en buffrande effekt till elektrolyten. Effekten av buffert har undersökts för en av de anodiska bireaktionerna, syrgasutveckling ur vatten, samt för vätgasutvecklingen på katoden. Dessa system har modellerats för att bättre förstå samspelet mellan buffert, elektrodreaktioner och materietransport och resultaten har verifierats experimentellt. Kromatbufferten ökade gränsströmmen för katodisk H+-reduktion betydligt och katodöverpotentialen sjönk kraftigt vid lägre strömmar än gränsströmmen. Detta kan vara ett problem om överpotentialen sjunker så lågt att elektroden inte är katodiskt skyddad. För syrgasutvecklingen ökade närvaron av kromatbuffert gränsströmmen för syrgasutveckling ur OH-. Modellering av dessa system visar att de homogena reaktioner som var kopplade till elektrodreaktionerna inte var i jämvikt vid elektrodytan. Vidare visade det sig vara mycket viktigt med en bra upplösning av gränsskiktet vid elektrodytan, då den buffring som är viktig för elektrodreaktionerna sker i ett mycket tunt reaktionsskikt (nanometertjockt).

Place, publisher, year, edition, pages
Stockholm: KTH, 2008. 55 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2008:22
Keyword
Chlorate, chloride oxidation, critical anode potential, chromate, DSA, hydrogen evolution, iron, mass transport, oxygen evolution, REM, RDE, steel
National Category
Inorganic Chemistry
Identifiers
urn:nbn:se:kth:diva-4681 (URN)978-91-7178-918-1 (ISBN)
Public defence
2008-04-18, V2, Teknikringen 76, Stockholm, 10:00
Opponent
Supervisors
Note

QC 20100901

Available from: 2008-03-27 Created: 2008-03-27 Last updated: 2012-12-18Bibliographically approved
2. In-situ activated hydrogen evolution from pH-neutral electrolytes
Open this publication in new window or tab >>In-situ activated hydrogen evolution from pH-neutral electrolytes
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The goal of this work was to better understand how molybdate and trivalent cations can be used as additives to pH neutral electrolytes to activate the Hydrogen Evolution Reaction (HER). Special emphasis was laid on the chlorate process and therefore also to some of the other effects that the additives may have in that particular process.

Cathode films formed from the molybdate and trivalent cations have been investigated with electrochemical and surface analytical methods such as polarization curves, potential sweep, Electrochemical Impedance Spectroscopy (EIS), current efficiency measurements, Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), X-Ray Fluorescence (XRF) and Inductively Coupled Plasma (ICP) analysis.

Trivalent cations and molybdate both activate the HER, although in different ways. Ligand water bound to the trivalent cations replaces water as reactant in the HER. Since the ligand water has a lower pKa than free water, it is more easily electrochemically deprotonated than free water and thus catalyzes the HER. Sodium molybdate, on the other hand, is electrochemically reduced on the cathode and form films which catalyze the HER (on cathode materials with poor activity for HER). Molybdate forms films of molybdenum oxides on the electrode surface, while trivalent cation additions form hydroxide films. There is a risk for both types of films that their ohmic resistance increases and the activity of the HER decreases during their growth. Lab-scale experiments show that for films formed from molybdate, these negative effects become less pronounced when the molybdate concentration is reduced.

Both types of films can also increase the selectivity of the HER by hindering unwanted side reactions, but none of them as efficiently as the toxic additive Cr(VI) used today in the chlorate process. Trivalent cations are not soluble in chlorate electrolyte and thus not suitable for the chlorate process, whereas molybdate, over a wide pH range, can activate the HER on catalytically poor cathode materials such as titanium.

Abstract [sv]

Målsättningen med detta doktorsarbete har varit att bättre förstå hur trivalenta katjoner och molybdat lösta i elektrolyten kan effektivisera elektrokemisk vätgasproduktion. Tillämpningen av dessa tillsatser i kloratprocessen och eventuella sidoeffekter har undersökts.

De filmer som bildas på katoden av tillsatserna har undersökts med både elektrokemiska och fysikaliska ytanalysmetoder: polarisationskurvor, potentialsvep, elektrokemisk impedansspektroskopi (EIS), strömutbytesmätningar, svepelektronmikroskopi (SEM), energidispersiv röntgenspektroskopi (EDS), röntgenfotoelektronspektroskopi (XPS), röntgenfluorensens (XRF) och induktivt kopplat plasma (ICP).

Både trivalenta katjoner och molybdat kan aktivera elektrokemisk vätgasutveckling, men på olika sätt. Vatten bundet till trivalenta katjoner ersätter fritt vatten som reaktant vid vätgasutveckling. Eftersom vatten bundet till trivalenta katjoner har lägre pKa-värde, går det lättare att producera vätgas från dessa komplex än från fritt vatten. Natriummolybdat däremot reduceras på katoden och bildar filmer som kan katalysera vätgasutvecklingen på substratmaterial som har låg katalytisk aktivitet för reaktionen. Molybdat bildar molybdenoxider på ytan medan trivalenta katjoner bildar metallhydroxider. Båda typerna av film riskerar att bilda filmer som är resistiva och deaktiverar vätgasutvecklingen. Laboratorieexperiment visar att problemen minskar med minskad molybdathalt.

Båda filmerna kan öka selektiviteten för vätgasutveckling genom att hindra sidoreaktioner. Filmerna är dock inte lika effektiva som de filmer som bildas från den ohälsosamma tillsatsen Cr(VI), vilken används i kloratprocessen idag. Trivalenta katjoner är inte lösliga i kloratelektrolyt och är därför inte en lämplig tillsats i kloratprocessen. Molybdat har god löslighet och kan aktivera vätgasutveckling i ett stort pH‑intervall på titan och andra substratmaterial som själva har betydlig sämre aktivitet för vätgasutveckling.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2012. 45 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2012:26
Keyword
molybdate, trivalent cations, electrolysis, hypochlorite reduction, films, electrolysis, chlorate process, molybdat, trivalenta katjoner, elektrolys, hypokloritreduktion, filmer, kloratprocessen
National Category
Engineering and Technology
Research subject
SRA - Energy
Identifiers
urn:nbn:se:kth:diva-95369 (URN)978-91-7501-391-6 (ISBN)
Public defence
2012-06-15, E3, Lindstedtsvägen 3, entréplan, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Projects
c6839
Funder
StandUp
Note

QC 20120530

Available from: 2012-05-30 Created: 2012-05-23 Last updated: 2013-04-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Cornell, Ann M.

Search in DiVA

By author/editor
Nylén, LindaGustavsson, JohnCornell, Ann M.
By organisation
Applied Electrochemistry
In the same journal
Journal of the Electrochemical Society
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 113 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf