Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mathematical Modelling of the Initial Mold Filling with Utilization of an Angled Runner
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.ORCID iD: 0000-0003-4384-7984
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.ORCID iD: 0000-0002-8493-9802
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
2019 (English)In: Metals, ISSN 2075-4701, Vol. 9, no 6Article in journal (Refereed) Published
Abstract [en]

The flow pattern plays a crucial role in the uphill teeming process. The non-metallic inclusion generation due to interaction with the mold flux is believed to be influenced by the flow pattern. In this study, a three-dimensional mathematical model of the filling of a gating system for 10, 20, and 30 degrees angled runners was used to predict the fluid flow characteristics. Moreover, a mathematical model with a horizontal runner was applied as a reference. The predictions indicate that the angled-runner-design decreases the hump height during the initial filling stage, which results in less entrapment of mold flux into the mold. Nevertheless, increasing the angle of runner can result in a lower hump height, while the 30 degree angled runner gives a much more stable increase of the hump height during the initial filling stage. Besides CFD calculations, some thermodynamic calculations are taken into account for the chemical reactions between liquid steel and gas. The results show that the bubble shrinks due to the fact that N and O are dissolved into steel. The present findings strongly suggest that changing the horizontal runner to an angled runner would be an effective means of reducing flow unevenness during the initial filling of ingots, if the added steel losses are deemed acceptable.

Place, publisher, year, edition, pages
MDPI , 2019. Vol. 9, no 6
Keywords [en]
CFD, bubble, uphill teeming, ingot casting, mathematical modelling, gating system, thermodynamic calculations
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:kth:diva-255577DOI: 10.3390/met9060693ISI: 000475356500077Scopus ID: 2-s2.0-85070457970OAI: oai:DiVA.org:kth-255577DiVA, id: diva2:1340144
Note

QC 20190802

Available from: 2019-08-02 Created: 2019-08-02 Last updated: 2019-10-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Ersson, MikaelMao, Huahai

Search in DiVA

By author/editor
Yin, JunErsson, MikaelMao, HuahaiJönsson, Pär G.
By organisation
Materials Science and Engineering
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf