Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of Polymer Architecture on the Adsorption Properties of a Nonionic Polymer
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface Chemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface Chemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface Chemistry.ORCID iD: 0000-0002-5444-7276
Department of Polymer Chemistry, Vilnius University.
Show others and affiliations
2008 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 24, no 13, 6676-6682 p.Article in journal (Refereed) Published
Abstract [en]

The adsorption of a linear- and bottle-brush poly(ethylene oxide (PEO))-based polymer, having comparable molecular weights, was studied by means of quartz crystal microbalance with dissipation monitoring ability (QCM-D) and AFM colloidal probe force measurements. The energy dissipation change monitored by QCM-D and the range of the steric forces obtained from force measurements demonstrated that linear PEO forms a more extended adsorption layer than the bottle-brush polymer, despite that the adsorbed mass is higher for the latter. Competitive adsorption studies revealed that linear PEO is readily displaced from the interface by the bottle-brush polymer. This was attributed to the higher surface affinity of the latter, which is governed by the number of contact points between the polymers and the interface, and the smaller loss of conformational entropy.

Place, publisher, year, edition, pages
2008. Vol. 24, no 13, 6676-6682 p.
Keyword [en]
Adsorption, Bioelectric phenomena, Brushes, Eigenvalues and eigenfunctions, Energy dissipation, Ethylene, Force measurement, Oxide minerals, Photoresists, Quartz, Quartz crystal microbalances, Adsorption layers, Adsorption properties, American Chemical Society (ACS), Competitive adsorption, Conformational entropy, Contact points, Non-ionic, Poly(ethylene oxide-terephthalate) (PEO), Polymer architecture, Quartz crystal microbalance with dissipation monitoring (QCM-D), Surface affinity
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-8157DOI: 10.1021/la800089vISI: 000257101100041Scopus ID: 2-s2.0-47349124527OAI: oai:DiVA.org:kth-8157DiVA: diva2:13405
Note
QC 20100830. Uppdaterad från accepted till published (20100830).Available from: 2008-03-27 Created: 2008-03-27 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Polyelectrolytes: Bottle-Brush Architectures and Association with Surfactants
Open this publication in new window or tab >>Polyelectrolytes: Bottle-Brush Architectures and Association with Surfactants
2008 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis has the dual purpose of raising awareness of the importance of the mixing protocol on the end products of polyelectrolyte-oppositely charged surfactant systems, and to contribute to a better understanding of the properties of bottle-brush polyelectrolytes when adsorbed onto interfaces.

In the first part of this thesis work, the effects of the mixing protocol and the mixing procedure on formed polyelectrolyte-oppositely charged surfactant aggregates were investigated. It was shown that the initial properties of the aggregates were highly dependent on the mixing parameters, and that the difference between the resulting aggregates persisted for long periods of time.

The second part of the studies was devoted to the surface properties of a series of bottle-brush polyelectrolytes made of charged segments and segments bearing poly(ethylene oxide) side chains; particular attention was paid to the effect of side chain to charge density ratio of the polyelectrolytes. It was shown that the adsorbed mass of the polyelectrolytes, and the corresponding number of poly(ethylene oxide) bearing segments at the interface, went through a maximum as the charge density of the polyelectrolyte was increased. Also, it was found that bottle-brush polyelectrolyte layers were desorbed quite easily when subjected to salt solutions. This observation was rationalized by the unfavourable excluded volume interactions between the side chains and the entropic penalty of confining them at an interface, which weaken the strength of the binding of the polyelectrolytes to the interface. However, it was shown that the same side chains effectively protect the adsorbed layer against desorption when the layer is exposed to solutions containing an oppositely charged surfactant. Investigation of the lubrication properties of the bottle-brush polyelectrolytes in an asymmetric (mica-silica) system also related the observed favourable frictional properties to the protective nature of the side chains. The decisive factor for achieving very low coefficients of friction was found to be the concentration of the side chains in the gap between the surfaces. Interestingly, it was shown that a brush-like conformation of the bottle-brush polyelectrolyte at the interface has little effect on achieving favourable lubrication properties. However, a brush-like conformation is vital for the resilience of the adsorbed layer against the competitive adsorption of species with a higher surface affinity.

Place, publisher, year, edition, pages
Stockholm: KTH, 2008. 39 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2008:18
Keyword
Polyelectrolyte, Surfactant, Bottle-Brush Polyelectrolyte, Comb Polyelectrolyte, Non-Equilibrium State, Polymer Architecture, Adsorption, Desorption, Association, Excluded Volume, Light Scattering, SFA, AFM, QCM-D, Turbidimeter, Mica, Silica, Surface Forces
National Category
Physical Chemistry
Identifiers
urn:nbn:se:kth:diva-4683 (URN)978-91-7178-903-7 (ISBN)
Public defence
2008-04-18, F3, Lindstedsvägen 28 100 44, Stockholm, 10:00
Opponent
Supervisors
Note
QC 20100830Available from: 2008-03-27 Created: 2008-03-27 Last updated: 2012-01-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Pettersson, Torbjörn

Search in DiVA

By author/editor
Naderi, AliIruthayaraj, JosephPettersson, TorbjörnClaesson, Per M.
By organisation
Surface Chemistry
In the same journal
Langmuir
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 100 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf