Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Identification of factors giving low fill factor in ZnO based dye sensitized solar cells
KTH, School of Chemical Science and Engineering (CHE), Chemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemistry.
Show others and affiliations
(English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455Article in journal (Other academic) Submitted
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-9859OAI: oai:DiVA.org:kth-9859DiVA: diva2:134176
Note
QS 2011 QS 20120328Available from: 2009-01-19 Created: 2009-01-19 Last updated: 2012-03-28Bibliographically approved
In thesis
1. Charge Transport Processes in Mesoporous Photoelectrochemical Systems
Open this publication in new window or tab >>Charge Transport Processes in Mesoporous Photoelectrochemical Systems
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

During the last decade, the dye sensitised solar cell (DSC) has attracted much attention. The technology has a potential to act as a new generation of photovoltaic device, it has also increased our knowledge within the field of photoelectrochemistry. The materials used in the DSC have been used in other technologies, such as electrochromic displays. This thesis examines how such systems can be analysed to understand their properties from their components. Both of the considered device technologies consist of a thin mesoporous semiconductor film immersed in an electrolyte. The study starts by investigating some of the fundamental properties of the mesoporous semiconductor and its interface with the electrolyte. This gives rise to the charge-voltage relationship for the devices, which is related to the chemical capacitance and electronic energy levels for the materials. In particular,special attention is given to the DSC and the properties of the charge carriers in the semiconductor. For the DSC, several techniques have been developed in order to understand the processes of transport and recombination for the charge carriers in the semiconductor film, which are vitally important for performance. In this thesis, particular focus is given to light modulation techniques and electrical analysis with impedance spectroscopy. The transportproperties show for both techniques a nonlinear behaviour, which is explained with the trapping model. The DSC solar cell is analysed in order to interpret the transport measurements for film thickness optimisation. DSC cells with new semiconductor materials, such as ZnO, were analysed with impedance measurements to provide new insights into the optimisation of the performance of the photoelectrochemical solar cell technology.

Place, publisher, year, edition, pages
Stockholm: KTH, 2009. x, 60 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2009:1
Keyword
solar cell, dye-sensitized, impedance, electron transport, mesoporous
National Category
Physical Chemistry
Identifiers
urn:nbn:se:kth:diva-9849 (URN)978-91-7415-209-8 (ISBN)
Public defence
2009-02-06, F3, KTH, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20100804Available from: 2009-01-19 Created: 2009-01-14 Last updated: 2010-08-04Bibliographically approved

Open Access in DiVA

No full text

By organisation
Chemistry
In the same journal
The Journal of Physical Chemistry C
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 149 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf