Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Paired Electrocatalytic Oxygenation and Hydrogenation of Organic Substrates with Water as the Oxygen and Hydrogen Source
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry. State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian, 116024, China.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian, 116024, China.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology.
Show others and affiliations
2019 (English)In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 58, no 27, p. 9155-9159Article in journal (Refereed) Published
Abstract [en]

The use of water as an oxygen and hydrogen source for the paired oxygenation and hydrogenation of organic substrates to produce valuable chemicals is of utmost importance as a means of establishing green chemical syntheses. Inspired by the active Ni3+ intermediates involved in electro-catalytic water oxidation by nickel-based materials, we prepared NiBx as a catalyst and used water as the oxygen source for the oxygenation of various organic compounds. NiBx was further employed as both an anode and a cathode in a paired electrosynthesis cell for the respective oxygenation and hydrogenation of organic compounds, with water as both the oxygen and hydrogen source. Conversion efficiency and selectivity of >= 99% were observed during the oxygenation of 5-hydroxy-methylfurfural to 2,5-furandicarboxylic acid and the simultaneous hydrogenation of p-nitrophenol to p-aminophenol. This paired electrosynthesis cell has also been coupled to a solar cell as a stand-alone reactor in response to sunlight.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2019. Vol. 58, no 27, p. 9155-9159
Keywords [en]
electrochemistry, green chemical synthesis, hydrogenation, oxygenation, water
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-255764DOI: 10.1002/anie.201903936ISI: 000476691200033PubMedID: 31025774Scopus ID: 2-s2.0-85066906976OAI: oai:DiVA.org:kth-255764DiVA, id: diva2:1343286
Note

QC 20190816

Available from: 2019-08-16 Created: 2019-08-16 Last updated: 2019-08-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Zhang, PeiliSheng, XiaFan, LizhouRen, YansongZhang, BiaobiaoAhlquist, Mårten S. G.Sun, Licheng

Search in DiVA

By author/editor
Zhang, PeiliSheng, XiaChen, XiaoyuFan, LizhouRen, YansongZhang, BiaobiaoTimmer, Brian J. J.Ahlquist, Mårten S. G.Sun, Licheng
By organisation
ChemistryOrganic chemistryTheoretical Chemistry and Biology
In the same journal
Angewandte Chemie International Edition
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 24 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf