Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dynamic analysis of multiple-photon optical processes in semiconductor quantum dots
KTH, School of Biotechnology (BIO), Theoretical Chemistry.ORCID iD: 0000-0002-2442-1809
KTH, School of Biotechnology (BIO), Theoretical Chemistry.
KTH, School of Biotechnology (BIO), Theoretical Chemistry.ORCID iD: 0000-0003-0007-0394
KTH, School of Biotechnology (BIO), Theoretical Chemistry.ORCID iD: 0000-0002-1763-9383
2006 (English)In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 18, no 39, 9071-9082 p.Article in journal (Refereed) Published
Abstract [en]

Semiconductor quantum dots (QDs) have been gaining much attention because of their outstanding properties for multiple-photon microscopy applications. By solving nonperturbatively the time-dependent Schrodinger equation, it has been shown that the large number of energy states densely compacted in both the conduction and valence bands of the QD greatly enhance the inter-band and intra-band optical couplings between two energy states induced by multiple photons from ultra-fast and ultra-intense lasers. The multiphoton absorption processes are further enhanced by many energy relaxation processes in commonly used semiconductors, which are generally represented by the relaxation energy in the order of tens of meV. Numerical calculation of multiphoton processes in QDs agrees with experimental demonstration. After proper designing, QDs can be activated by infrared radiation to emit radiation in the visible optical regime (up-conversion) for bioimaging applications.

Place, publisher, year, edition, pages
2006. Vol. 18, no 39, 9071-9082 p.
Keyword [en]
Absorption; Differential equations; Electron energy levels; Optical properties; Perturbation techniques; Photons; Relaxation processes; Intraband optical couplings; Multiphoton absorption processes; Multiple photon optical processes; Ultra intense lasers
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-8236DOI: 10.1088/0953-8984/18/39/033ISI: 000241269800036Scopus ID: 2-s2.0-33748856655OAI: oai:DiVA.org:kth-8236DiVA: diva2:13501
Note
QC 20100730Available from: 2008-04-18 Created: 2008-04-18 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Optical Properties of Low Dimensional Semiconductor Materials
Open this publication in new window or tab >>Optical Properties of Low Dimensional Semiconductor Materials
2008 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

This dissertation presents a serial study on optical properties of different semiconductor materials. Three main types of studies are addressed: The role of doping levels of N and Al atoms in the room-temperature photoluminescence (PL) of 4H-SiC films for optoelectronic applications; the use of a basic Monte Carlo method combined with probability calculations of the time-dependent Schroedinger equation to manifest multi-photon absorption and emission of II-VI compound quantum dots (QDs) for bioimaging; a theoretical quantum chemistry approach to study of structure and optical properties of InGaAsN and GaAs clusters for laser technology applications. 4H-SiC films were grown on AlN/SiC(100) substrates by a chemical vapour deposition (CVD) system. Three well-defined room-temperature PL peaks close to the band-gap energy were observed. By a detailed theoretical analysis of optical transitions in the samples, it was found that the PL peaks are most probably due to the optical transitions between impurity levels and band edges, and the transition between the second minimum of the conduction band and the top of the valance band. Special attention has been paid to effects of doping levels of N and Al impurities. Optical transitions in several II-VI semiconductor QDs have been studied by a quantum Monte Carlo method. We model the QD energy band structure by a spherical square quantum well and the electrons in the conduction band and holes in the valence band by the effective mass approximation. The optical probabilities of optical transitions induced by ultrafast and ultraintense laser pulses are calculated from the time-dependent Schroedinger equation. With the inclusion of the nonradiative electron-phonon processes, the calculated absorption and emission spectra are in agreement with experimental work. The dynamic processes and up-conversion luminescence of the QDs, required for many applications including bio-imaging, are demonstrated. Quantum chemistry is used to study InGaAsN and GaAs nano systems. The molecular structures of a series of dilute-nitride zinc blende InGaNAs clusters are examined from the energy point of view with a semi-empirical method. The optimum cluster configurations are identified by which we can identify the detailed bonding structures and the effects of In mole fraction. After proper geometry construction, an effective central insertion scheme has been implemented to study the electronic band structures of GaAs at the first-principles level. The formation of energy bands and quantum confinement effects have been revealed, thus providing theoretical support for laser design.

Place, publisher, year, edition, pages
Stockholm: KTH, 2008. 58 p.
Series
Trita-BIO-Report, ISSN 1654-2312 ; 2008:8
Keyword
Semiconductor, Low dimensional, optics
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-4699 (URN)978-91-7178-909-9 (ISBN)
Public defence
2008-04-29, FA31, Roslagstullsbacken 21, AlbaNova, Stockholm, 14:00
Opponent
Supervisors
Note
QC 20100730Available from: 2008-04-18 Created: 2008-04-18 Last updated: 2010-07-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Fu, YingLuo, YiÅgren, Hans

Search in DiVA

By author/editor
Fu, YingHan, TiantianLuo, YiÅgren, Hans
By organisation
Theoretical Chemistry
In the same journal
Journal of Physics: Condensed Matter
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 43 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf