Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A micromechanical model of freeze-thaw damage in asphalt mixtures
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0001-8718-1411
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0001-7333-1140
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0003-3968-6778
2019 (English)In: The international journal of pavement engineering, ISSN 1029-8436, E-ISSN 1477-268XArticle in journal (Refereed) Published
Abstract [en]

Freeze-thaw damage in asphalt pavements is a complex phenomenon dependent on many parameters such as moisture infiltration, temperature and mechanical properties of the asphalt constituents as well as the interface between them. As a first step in creating a comprehensive multiscale model including all of these parameters, a micromechanical model has been developed. This model couples the infiltration of moisture and the associated damage, the expansion caused by the water inside the air voids freezing, and the mechanical damage. The expansion of the air voids is implemented by applying a volumetric expansion in the air voids dependent on the temperature. The cohesive damage in the mastic and adhesive damage in the mastic-aggregate interface are included by implementing an energy-based damage model and the cohesive zone model, respectively. To show the capabilities of the model, the effect of different parameters (the number of freeze-thaw cycles, the gradation of the microstructure, and the freezing time) was investigated through simulations. From the analyses it was concluded that the model was capable of capturing the deteriorating effect of an increasing number of freeze-thaw cycles, and was sensitive to the freezing time in the freeze-thaw cycles.

Place, publisher, year, edition, pages
TAYLOR & FRANCIS LTD , 2019.
Keywords [en]
Frost damage, moisture damage, modelling, asphalt mixture, microstructure, FEM
National Category
Architectural Engineering
Identifiers
URN: urn:nbn:se:kth:diva-259446DOI: 10.1080/10298436.2019.1656808ISI: 000482542700001Scopus ID: 2-s2.0-85071029790OAI: oai:DiVA.org:kth-259446DiVA, id: diva2:1352976
Note

QC 20190920

Available from: 2019-09-20 Created: 2019-09-20 Last updated: 2019-10-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Lövqvist, LisaBalieu, RomainKringos, Nicole

Search in DiVA

By author/editor
Lövqvist, LisaBalieu, RomainKringos, Nicole
By organisation
Structural Engineering and Bridges
In the same journal
The international journal of pavement engineering
Architectural Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf