Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Controlled Multistep Self-Assembling of Colloidal Droplets at a Nematic Liquid Crystal-Air Interface
Zhejiang Univ, Coll Opt Sci & Engn, Ctr Opt & Electromagnet Res, State Key Lab Modern Opt Instrumentat, Hangzhou 310058, Zhejiang, Peoples R China..
Zhejiang Univ, Coll Opt Sci & Engn, Ctr Opt & Electromagnet Res, State Key Lab Modern Opt Instrumentat, Hangzhou 310058, Zhejiang, Peoples R China..
Zhejiang Univ, Coll Opt Sci & Engn, Ctr Opt & Electromagnet Res, State Key Lab Modern Opt Instrumentat, Hangzhou 310058, Zhejiang, Peoples R China..
Inst Phys, Dept Theoret Phys, Prospect Nauki 46, UA-03039 Kiev, Ukraine..
Show others and affiliations
2019 (English)In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 123, no 8, article id 087801Article in journal (Refereed) Published
Abstract [en]

We present a controlled cascade of self-assemblings of colloidal droplets at a nematic liquid crystal-air interface into large-scale ordered structures. Changing the tilt of the droplet-induced elastic dipoles via its dependence on the nematic film thickness, we are able to control the dipole-dipole interaction and thus the self-assembling regime. For a progressively large tilt, droplets form anisotropic lattices, which then transform into arrays of repulsive chains, then to bands of half-period-shifted densely bound chains. These structures with chain order at the inner scale aggregate into different large-scale clusters that have a pronounced circular pattern and are stabilized by the many-body elastocapillary attraction.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC , 2019. Vol. 123, no 8, article id 087801
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-259448DOI: 10.1103/PhysRevLett.123.087801ISI: 000482215500010PubMedID: 31491225Scopus ID: 2-s2.0-85071896889OAI: oai:DiVA.org:kth-259448DiVA, id: diva2:1353369
Note

QC 20190923

Available from: 2019-09-23 Created: 2019-09-23 Last updated: 2019-09-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

He, Sailing

Search in DiVA

By author/editor
He, Sailing
By organisation
Electromagnetic Engineering
In the same journal
Physical Review Letters
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf