Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dynamic Event-Triggered and Self-Triggered Control for Multi-agent Systems
KTH, School of Electrical Engineering and Computer Science (EECS), Automatic Control.
Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China..
KTH, School of Electrical Engineering and Computer Science (EECS), Automatic Control. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, ACCESS Linnaeus Centre.ORCID iD: 0000-0001-7309-8086
KTH, School of Electrical Engineering and Computer Science (EECS), Automatic Control. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, ACCESS Linnaeus Centre.ORCID iD: 0000-0001-9940-5929
2019 (English)In: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 64, no 8, p. 3300-3307Article in journal (Refereed) Published
Abstract [en]

We propose two novel dynamic event-triggered control laws to solve the average consensus problem for first-order continuous-time multiagent systems over undirected graphs. Compared with the most existing triggering laws, the proposed laws involve internal dynamic variables, which play an essential role in guaranteeing that the triggering time sequence does not exhibit Zeno behavior. Moreover, some existing triggering laws are special cases of ours. For the proposed self-triggered algorithm, continuous agent listening is avoided as each agent predicts its next triggering time and broadcasts it to its neighbors at the current triggering time. Thus, each agent only needs to sense and broadcast at its triggering times, and to listen to and receive incoming information from its neighbors at their triggering times. It is proved that the proposed triggering laws make the state of each agent converge exponentially to the average of the agents' initial states if and only if the underlying graph is connected. Numerical simulations are provided to illustrate the effectiveness of the theoretical results.

Place, publisher, year, edition, pages
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC , 2019. Vol. 64, no 8, p. 3300-3307
Keywords [en]
Consensus, dynamic event-triggered control, multiagent systems, self-triggered control
National Category
Control Engineering
Identifiers
URN: urn:nbn:se:kth:diva-257567DOI: 10.1109/TAC.2018.2874703ISI: 000478694300016Scopus ID: 2-s2.0-85054510419OAI: oai:DiVA.org:kth-257567DiVA, id: diva2:1353478
Note

QC 20190923

Available from: 2019-09-23 Created: 2019-09-23 Last updated: 2019-09-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Yi, XinleiDimarogonas, Dimos V.Johansson, Karl H.

Search in DiVA

By author/editor
Yi, XinleiDimarogonas, Dimos V.Johansson, Karl H.
By organisation
Automatic ControlCentre for Autonomous Systems, CASACCESS Linnaeus Centre
In the same journal
IEEE Transactions on Automatic Control
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 21 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf