Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
New Tools and Connections for Exponential-Time Approximation
Eindhoven Univ Technol, Eindhoven, Netherlands..
Aalto Univ, Helsinki, Finland..
Shanghai Univ Finance & Econ, Shanghai, Peoples R China..
KTH, School of Electrical Engineering and Computer Science (EECS), Theoretical Computer Science, TCS.ORCID iD: 0000-0003-4468-2675
Show others and affiliations
2019 (English)In: Algorithmica, ISSN 0178-4617, E-ISSN 1432-0541, Vol. 81, no 10, p. 3993-4009Article in journal (Refereed) Published
Abstract [en]

In this paper, we develop new tools and connections for exponential time approximation. In this setting, we are given a problem instance and an integer r > 1, and the goal is to design an approximation algorithm with the fastest possible running time. We give randomized algorithms that establish an approximation ratio of 1. r for maximum independent set in O*(exp((O) over tilde (n/r log(2) r + r log(2) r))) time, 2. r for chromatic number in O*(exp((O) over tilde (n/r log r + r log(2) r))) time, 3. (2 - 1/r) for minimum vertex cover in O*(exp(n/r(Omega(r)))) time, and 4. (k - 1/r) for minimum k-hypergraph vertex cover in O*(exp(n/(kr)(Omega(kr)))) time. (Throughout, (O) over tilde and O* omit polyloglog(r) and factors polynomial in the input size, respectively.) The best known time bounds for all problems were O*(2n/r) (Bourgeois et al. in Discret Appl Math 159(17): 1954-1970, 2011; Cygan et al. in Exponential-time approximation of hard problems, 2008). For maximum independent set and chromatic number, these bounds were complemented by exp(n(1-o(1))/r(1+o(1))) lower bounds (under the Exponential Time Hypothesis (ETH)) (Chalermsook et al. in Foundations of computer science, FOCS, pp. 370-379, 2013; Laekhanukit in Inapproximability of combinatorial problems in subexponential-time. Ph.D. thesis, 2014). Our results show that the naturally-looking O*(2n/r) bounds are not tight for all these problems. The key to these results is a sparsification procedure that reduces a problem to a bounded-degree variant, allowing the use of approximation algorithms for bounded-degree graphs. To obtain the first two results, we introduce a new randomized branching rule. Finally, we show a connection between PCP parameters and exponential-time approximation algorithms. This connection together with our independent set algorithm refute the possibility to overly reduce the size of Chan's PCP (Chan in J. ACM 63(3): 27: 1-27: 32, 2016). It also implies that a (significant) improvement over our result will refute the gap-ETH conjecture (Dinur in Electron Colloq Comput Complex (ECCC) 23: 128, 2016; Manurangsi and Raghavendra in A birthday repetition theorem and complexity of approximating dense CSPs, 2016).

Place, publisher, year, edition, pages
SPRINGER , 2019. Vol. 81, no 10, p. 3993-4009
Keywords [en]
Approximation algorithms, PCP's, Exponential time algorithms
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:kth:diva-259411DOI: 10.1007/s00453-018-0512-8ISI: 000482896500007PubMedID: 31496549Scopus ID: 2-s2.0-85053412910OAI: oai:DiVA.org:kth-259411DiVA, id: diva2:1354062
Note

QC 20190924

Available from: 2019-09-24 Created: 2019-09-24 Last updated: 2019-09-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Na Nongkai, Danupon

Search in DiVA

By author/editor
Na Nongkai, Danupon
By organisation
Theoretical Computer Science, TCS
In the same journal
Algorithmica
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf