Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Biobased Polyamide Thermosets: From a Facile One-Step Synthesis to Strong and Flexible Materials
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.ORCID iD: 0000-0001-7304-6737
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.ORCID iD: 0000-0002-7790-8987
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.ORCID iD: 0000-0002-5850-8873
2019 (English)In: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 52, no 16, p. 6181-6191Article in journal (Refereed) Published
Abstract [en]

Biobased polyamide (PA) thermosets composed of renewable ethylene brassylate were synthesized through a one-step reaction under solvent-free conditions, at 100 degrees C in the presence of an organocatalyst. Under these conditions, thermoset formation times as low as 10 min were achieved. The thermosets were easily prepared as thin, transparent films with high strength, flexibility, and high thermal stability. The ester-to-amine content and formation of ethylene glycol in situ as a byproduct of the reaction were studied and correlated with the final properties of the materials. Crystalline oligoester segments were identified as a result of ring-opening polymerization and were shown to have a beneficial effect on the mechanical properties of the thermosets and endowed shape-memory behavior. In contrast to other routes, employing multistep monomer preparation, harsh conditions, and chlorinated reagents, this procedure contributed to the development of sustainable, functional PA thermosets.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC , 2019. Vol. 52, no 16, p. 6181-6191
National Category
Polymer Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-260186DOI: 10.1021/acs.macromol.9b00359ISI: 000483437500015Scopus ID: 2-s2.0-85071380280OAI: oai:DiVA.org:kth-260186DiVA, id: diva2:1355915
Note

QC 20190930

Available from: 2019-09-30 Created: 2019-09-30 Last updated: 2019-09-30Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Pronoitis, CharalamposHua, GengHakkarainen, MinnaOdelius, Karin

Search in DiVA

By author/editor
Pronoitis, CharalamposHua, GengHakkarainen, MinnaOdelius, Karin
By organisation
Fibre- and Polymer Technology
In the same journal
Macromolecules
Polymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 93 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf