Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spectrahedrality of hyperbolicity cones of multivariate matching polynomials
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).ORCID iD: 0000-0002-2305-9764
2019 (English)In: Journal of Algebraic Combinatorics, ISSN 0925-9899, E-ISSN 1572-9192, Vol. 50, no 2, p. 165-190Article in journal (Refereed) Published
Abstract [en]

The generalized Lax conjecture asserts that each hyperbolicity cone is a linear slice of the cone of positive semidefinite matrices. We prove the conjecture for a multivariate generalization of the matching polynomial. This is further extended (albeit in a weaker sense) to a multivariate version of the independence polynomial for simplicial graphs. As an application, we give a new proof of the conjecture for elementary symmetric polynomials (originally due to Branden). Finally, we consider a hyperbolic convolution of determinant polynomials generalizing an identity of Godsil and Gutman.

Place, publisher, year, edition, pages
SPRINGER , 2019. Vol. 50, no 2, p. 165-190
Keywords [en]
Generalized Lax conjecture, Hyperbolic polynomial, Stable polynomial, Multivariate matching polynomial, Multivariate independence polynomial
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-261988DOI: 10.1007/s10801-018-0848-9ISI: 000487050100004Scopus ID: 2-s2.0-85055458324OAI: oai:DiVA.org:kth-261988DiVA, id: diva2:1360105
Note

QC 20191011

Available from: 2019-10-11 Created: 2019-10-11 Last updated: 2019-10-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Amini, Nima

Search in DiVA

By author/editor
Amini, Nima
By organisation
Mathematics (Div.)
In the same journal
Journal of Algebraic Combinatorics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf