Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Photoevaporation of Jeans-unstable molecular clumps
Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy..
Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy.;Museo Stor Fis, Ctr Fermi, Piazza Viminale 1, I-00184 Rome, Italy.;Ctr Studi & Ric Enrico Fermi, Piazza Viminale 1, I-00184 Rome, Italy..
Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy.;Univ Tokyo, Kavli IPMU, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan..
KTH. Leiden Univ, Leiden Observ, POB 9500, NL-2300 RA Leiden, Netherlands.;KTH Royal Inst Technol, NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden.;Stockholm Univ, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden..
Show others and affiliations
2019 (English)In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 487, no 3, p. 3377-3391Article in journal (Refereed) Published
Abstract [en]

We study the photoevaporation of Jeans-unstable molecular clumps by isotropic FUV (6 eV < by < 13.6 eV) radiation, through 3D radiative transfer hydrodynamical simulations implementing a non-equilibrium chemical network that includes the formation and dissociation of H2. We run a set of simulations considering different clump masses (M = 10-200 Mo) and impinging fluxes (G0 = 2 x 103 to 8 x 104 in Habing units). In the initial phase, the radiation sweeps the clump as an R-type dissociation front, reducing the H2 mass by a factor 40-90 per cent. Then, a weak (.A4 2) shock develops and travels towards the centre of the clump, which collapses while losing mass from its surface, All considered clumps remain gravitationally unstable even if radiation rips off most of the clump mass, showing that external REV radiation is not able to stop clump collapse. However, the REV intensity regulates the final H2 mass available for star formation: for example, for Go < 104 more than 10 per cent of the initial clump mass survives, Finally, for massive clumps (?, 100 the H2 mass increases by 25-50 per cent during the collapse, mostly because of the rapid density growth that implies a more efficient H2 self-shielding.

Place, publisher, year, edition, pages
OXFORD UNIV PRESS , 2019. Vol. 487, no 3, p. 3377-3391
Keywords [en]
methods: numerical, ISM: clouds, ISM: evolution, photodissociation region (PDR)
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:kth:diva-256261DOI: 10.1093/mnras/stz1527ISI: 000478053200033Scopus ID: 2-s2.0-85072296377OAI: oai:DiVA.org:kth-256261DiVA, id: diva2:1365842
Note

QC 20191025

Available from: 2019-10-25 Created: 2019-10-25 Last updated: 2019-10-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Vallini, Livia
By organisation
KTH
In the same journal
Monthly notices of the Royal Astronomical Society
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 4 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf