Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose
Institute of Agrochemistry and Food Technology, CSIC.
Institute of Agrochemistry and Food Technology, CSIC.
STFI-Packforsk.
STFI-Packforsk.
Show others and affiliations
2007 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 68, no 4, 718-727 p.Article in journal (Refereed) Published
Abstract [en]

This work describes a novel approach to produce amylopectin films with enhanced properties by the addition of micro fibrillated cellulose (MFC). Aqueous dispersions of gelatinized amylopectin, glycerol (0-38 wt%) and MFC (0-10 wt%) were cast at ambient temperature and 50% relative humidity and, after 10 days of storage, the tensile properties were investigated. The structure of the composite films was revealed by optical, atomic force and transmission electron microscopy. The moisture content was determined by thermogravimetry and the temperature-dependent film rigidity was measured by thermal mechanical analysis. Synchrotron simultaneous small- and wide-angle X-ray measurements revealed that the solutions had to be heated to above 85 degrees C in order to achieve complete gelatinization. Optical microscopy and atomic force microscopy revealed uniformly distributed MFC aggregates in the films, with a length of 10-90 mu m and a width spanning from a few hundred nanometers to several microns. Transmission electron microscopy showed that, in addition to aggregates, single MFC microfibrils were also embedded in the amylopectin matrix. It was impossible to cast antylopectin films of sufficient quality with less than 38 wt% glycerol. However, when MFC was added it was possible to produce high quality films even without glycerol. The film without glycerol was stiff and strong but not brittle. It was suggested that this remarkable effect was due to its comparatively high moisture content. Consequently MFC acted both as a "conventional" reinforcement because of its fibrous structure and also indirectly as a plasticiser because its presence led to an increase in film moisture content.

Place, publisher, year, edition, pages
2007. Vol. 68, no 4, 718-727 p.
Keyword [en]
amylopectin films, microfibrillar cellulose, glycerol, mechanical properties, plasticiser
National Category
Polymer Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-8361DOI: 10.1016/j.carbpol.2006.08.008ISI: 000245846200012Scopus ID: 2-s2.0-33947172649OAI: oai:DiVA.org:kth-8361DiVA: diva2:13663
Note
QC 20100831Available from: 2008-05-07 Created: 2008-05-07 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Biodegradable Blends and Nanocomposite Films with Amylopectin, Poly(lactic acid) and Chitosan Matrices
Open this publication in new window or tab >>Biodegradable Blends and Nanocomposite Films with Amylopectin, Poly(lactic acid) and Chitosan Matrices
2008 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [sv]

Användningan av engångsförpackningar har ökat kraftigt de senaste åren. Den absolut största delen av dessa förpackningar tillverkars av oljebaserade plaster såsom polyetylen (PE) och polypropylen (PP). Dessa har även en oerhört lång nedbrytningstid, vilket gör det viktigt att finna mer miljövänliga alternativ. Exempel på förnyelsebara och bionedbrytbara material är amylopektin (AP), kitosan och polymjölksyra (PLA). I denna avhandling presenteras arbete med att utveckla dessa material för att öka deras chanser att i framtiden användas som, förslagsvis, förpackningsmaterial. Nanokompositer baserade på AP och kitosan tillverkas genom att montmorillonitlera (MMT) och/eller mikrofibrillär cellulosa (MFC) inkorporeras i matrisen. En metod där en vattenlöslig reaktiv kompatibilisator används för att öka adhesionen mellan MMT och AP-matrisen presenteras. Mekanisk prövning visar på ökad styvhet and styrka när kompatibilisatorn används. Påverkan av olika värmebehandlingar innan, under och efter filmbildning redovisas. Med infraröd strålning (IR) och absorbtionsmätningar följs rektionen mellan fyllmedel och matris. Studier på MFC/AP visar att användningen av MFC leder till en anmärkningsvärd effect, det vanligen spröda amylopektinmaterialet blir en böjbar komposit utan att använda mjukgörare. Detta är möjligt tack vare att MFC är mycket hydroskopisk och, som de termiska mätningarna visar, binder vatten väldigt hart. Även mekaniska prövning av fiberkompositerna har studerats. Fiberkompositer baserade på kitosan har studerats tillsammans med en allmänt vedertagen buffringsmetod. De mekaniska egenskaperna i vått och torrt tillstånd har genom detta kunna förbättrats. Fiber och lerdistributionen i samtliga nanokompositer har även analyserats med X-ray, transmissions electron mikroskop (TEM), skanning electron mikroskop (SEM) och optiskt mikroskop (OM). Slutligen har PLA blandningar med AP producerats genom smältblandning. För att öka affiniteten mellan de två komponenterna har en nedbrytbar sort av polyetylenvinylalkohol (EVOH), med hög halt vinyl alkohol, använts som kompatibilisator. Den morphologiska stukturen har studerats genom SEM, OM, och Raman spektroskopi. En bra mixing erhölls även om en visss fasseparation kunde ses. När även glycerol ingick i systemet kunde en lite bättre dispersion fås.

Abstract [en]

As the use of disposable materials is rapidly increasing so are the issues with waste handling. Today, the majority of the materials used for these applications, i.e. food packages, are oil-based plastics such as polyethylene and polypropylene. Therefore, it is important to find biodegradable materials made from renewable resources for this huge growing market. Amylopectin (AP), poly(lactic acid) (PLA) and chitosan are three interesting materials for these applications. In this thesis, several ways and methods are evaluated to improve these materials and their chances of becoming future biodegradable bulk materials. AP and chitosan based nanocomposites were created by incorporating montmorillonite (MMT) and/or microfibrillated cellulose (MFC) into the materials. Also, a novel approach of using a water-soluble coupling agent to enhance the strength and stiffness of AP/MMT-composites by increasing the adhesion between the matrix and the filler is presented. Through infrared spectroscopy (IR) and moisture absorption measurements the reaction was analyzed. Mechanical testing showed that an improved strength and stiffness was obtained with the use of the coupling agent. By using appropriate treatment, before, during and after filmmaking, the effect of the coupling agent could be further increased. The AP/MFC composites showed that MFC bind water very tightly, creating a foldable material based on the naturally brittle AP. Chitosan has been investigated to study the mechanical properties of films in dry and wet conditions using MFC and/or a well-known buffer treatment. The addition of MFC prevented extensive shrinkage in the wet condition due to increased wet stiffness. The fibre and clay distribution in all the composites have been analyzed with X-ray, transmission electron microscopy, scanning electron microscopy and optical microscopy. Furthermore, PLA/AP blends were produced through melt mixing. In efforts to improve the affinity between the two constituents, a biodegradable grade of poly(ethylene-co-vinyl alcohol) EVOH, with high vinyl alcohol content, was used as a compatibilizer. Good mixing were obtained even if some phase separated structure could be seen. The presence of glycerol slightly increased the dispersion of the secondary phase in PLA.

Place, publisher, year, edition, pages
Stockholm: KTH, 2008. 61 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2008:29
Keyword
amylopectin, chitosan, microfibrillated cellulose, nanocomposite, montmorillonite, coupling agent, amylopektin, kitosan, mikrofibrillär cellulose, nanokomposit, montmorillonit, kompatibilisator
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-4731 (URN)978-91-7178-939-6 (ISBN)
Public defence
2008-05-30, F3, Lindstedtsvägen 26, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
QC 20100831Available from: 2008-05-07 Created: 2008-05-07 Last updated: 2010-08-31Bibliographically approved
2. Biodegradable nanocomposite films based on amylopectin and chitosan
Open this publication in new window or tab >>Biodegradable nanocomposite films based on amylopectin and chitosan
2006 (English)Licentiate thesis, comprehensive summary (Other scientific)
Abstract [en]

The use of disposable material is rapidly increasing, today the absolute majority of the material used for these application, i.e. food packages, are oil-based plastics such as polyethylene and polypropylene. Therefore it is of great importance to find alternative biodegradable materials made from renewable resources for this huge growing market. In the present thesis, work and research to develop and improve such materials are presented. Amylopectin and chiotsan are two interesting material choises for these applications. In this thesis serveral ways of improving amylopectin (AP) and chitosan films are presented, using either Na+-montmorillonite (MMT) or microfibrillated cellulose (MFC). A novel approach of using a water-soluble coupling agent to enchance the strength and stiffness of MMT/AP-composites by increasing the adhesion beween the matrix and the filler. The results from IR, mechanical and moisture absorption tests show that the coupling agent indeed improve the properties of the composite films. Studies on MFC/AP show that the MFC have a remarkable effect of acting as a reinforcing plasticiser creating a flexible material without the use of a plasticiser. Thermal measurements show that the MFC have a ability to bound water very tightly. This was further investigated with thermal analysis. Chitosan, another interesting “green material”, and the effect of using MFC and/or a well-known buffer treatment, to enhace the mechanical properties of chitosan films in dry and wet conditions have here been investigated. The addition of MFC prevented extensive shrinkage in the wet condition due to increased wet stiffness.

Place, publisher, year, edition, pages
Stockholm: KTH, 2006. 41 p.
Series
Trita-FPT-Report, ISSN 1652-2443 ; 2006:36
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-4168 (URN)91-7178-477-2 (ISBN)
Presentation
2006-11-22, V3, Väg&Vatten, Teknikringen 72, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20101122Available from: 2006-11-13 Created: 2006-11-13 Last updated: 2010-11-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Nordqvist, DavidMattozzi, AlessandroHedenqvist, Mikael S.
By organisation
Fibre and Polymer Technology
In the same journal
Carbohydrate Polymers
Polymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 220 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf