Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A framework for application of dynamic line rating to aluminum conductor steel reinforced cables based on mechanical strength and durability
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.ORCID iD: 0000-0002-4065-715x
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.ORCID iD: 0000-0002-4730-2095
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.
Show others and affiliations
2020 (English)In: International Journal of Electrical Power & Energy Systems, ISSN 0142-0615, E-ISSN 1879-3517, Vol. 116, article id 105491Article in journal (Refereed) Published
Abstract [en]

Dynamic line rating can be described as a method of overloading the power line within reliability and safety limits. Power line's loading limits can be increased, if its temperature is controlled to be below the maximum allowable conductor temperature, which is defined by the grid regulations. Dynamic rating brings additional uncertainties and risks to the grid operation due to high variability of weather conditions, which plays an essential role in determining real-time capacity limits. Power lines often are under the influence of risk factors related to power system performance, however, they could also be subjected to additional risks related to their mechanical structure. Overhead lines, which are composed of more than one stranded material, are exposed to increasing mechanical stress due to differences in thermal expansion characteristics of different materials. The reliability analysis of transient expansion/shrinkage of the material has identified the risks to the conductor mechanical strength that are associated with dynamic heating and cooling. This study determines an optimal dynamic line rating application, which not only would take into account electrical properties of the system and economic benefits, but would also minimize the aging of steel reinforced aluminum overhead lines. Alternatively to hourly line rating adjustment, 2 h, 3 h and 4 h ratings are suggested as possible way to decrease impact of DLR on conductor mechanical durability. Comparing the mechanical durability and cost benefits between different frequencies of loading limit adjustments, allows suggesting improvements to dynamic line rating application. 

Place, publisher, year, edition, pages
Elsevier, 2020. Vol. 116, article id 105491
Keywords [en]
Aluminum conductor steel reinforced, Conductor mechanical strength, Dynamic line rating, Power line durability, Durability, Electric power system control, Overhead lines, Reinforcement, Reliability analysis, Risk assessment, Thermal expansion, Dynamic line ratings, Maximum allowable conductor temperature, Mechanical durability, Power lines, Power system performance, Reliability and safeties, Thermal expansion characteristics, Dynamics
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-262058DOI: 10.1016/j.ijepes.2019.105491ISI: 000499733200009Scopus ID: 2-s2.0-85072543859OAI: oai:DiVA.org:kth-262058DiVA, id: diva2:1372297
Note

QC 20191122

Available from: 2019-11-22 Created: 2019-11-22 Last updated: 2020-01-13Bibliographically approved
In thesis
1. Dynamic Rating with Applications to Renewable Energy
Open this publication in new window or tab >>Dynamic Rating with Applications to Renewable Energy
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Dynamic rating (DR) of power components is a method for assessing real-time capacity of large scale power transmission and distribution devices (commonly: transmission lines, power transformers, underground cables) and using this knowledge for adjusting loading limits of these components. 

Dynamic rating of power lines or dynamic line rating (DLR) is a pioneering technology in the area of dynamic rating. Heat balance of an overhead conductor is a defining factor when designing capacity limits for power lines. The maximum ampacity of the power line depends on the factors, such as ambient temperature, wind speed, wind direction, solar radiation, humidity, location, height above the sea level and conductor dimensions and material properties. 

Dynamic transformer rating (DTR) is a new emerging technology with high interest from industry and academia. Similarly to DLR, the dynamic rating of transformers relies on a thermal assessment of the device by locating the hottest spot in the transformer windings. The hot-spot temperature is the limiting factor for determining the maximum allowable ampacity. By shifting from the power-constrained the loading limits to the temperature-constrained, it is possible to achieve much better utilization of power transformer.

Recently, DLR became a recognizable concept in the power systems research community; DTR is also slowly gaining its popularity among researchers. At the same time, the industry begins to recognize DR benefits and invest in dynamic rating technologies. However, there exist many unanswered questions to the technology's reliability, applicability and safe operation. One of the central questions is: how to integrate dynamic rating into short term and long term planning decisions?

he results of the work presented in this thesis show that dynamic rating has high potential to improve power system performance and reduce the costs for power dispatch and increase the share of the renewable energy in the electricity mix. Together with that dynamic rating can help to make renewable energy more accessible by decrease the investment needed for supplying the electricity demand and providing cheaper and faster grid connection.

Abstract [sv]

Dynamisk rating (DR) av elkraftkomponenter syftar till tekniker för att uppskatta kapaciteten hos komponenter för storskalig överföring av elkraft (vanligtvis: kraftledningar, transformatorer, underjordiska kablar) i realtid och använda denna information för att justera belastningsgränserna för dessa. 

Dynamisk rating av kraftledningar (DLR) är en nydanande teknik inom detta område. Värmebalansen för en kraftledning är en viktig faktor för att bestämma dess överföringskapacitet. En kraftlednings maximala strömledningsförmåga beror därför på faktorer så som temperatur, vindhastighet, vindriktning, solstrålning, fuktighet, geografiskt läge, höjd över havet och ledarens dimensioner och materialegenskaper.

Dynamisk rating av transformatorer (DTR) är en ny teknik med stort intresse från industri och akademi. Liknande som för DLR använder sig DTR av en uppskattning av den hot-spot temperaturen, hos komponenten genom att hitta den varmaste punkten i transformatorlindningarna. Hot-spot temperaturen är den begränsande faktorn för att avgöra transformatorns överföringskapacitet. Genom att låta den maximalt tillåtna belastningen bero på temperaturen istället för effekten kan utnyttjandet av transformatorn förbättras väsentligt. 

Nyligen har DLR blivit ett erkänt koncept inom forskningen för elkraft och DTR har också börjat bli populärt bland forskare. Samtidigt har industrin börjat se fördelarna av DR och investera i dessa tekniker. Det finns dock fortfarande många frågor kring teknikern som rör tillförlitlighet, applicerbarhet och säkerhet. En av de viktigaste frågorna är hur man bäst kan integrera dynamisk rating i kort- och långtidsplaneringen av elkraftsystem.

Resultaten av arbetet som presenteras i denna avhandling visar att dynamisk rating har en stor potential att minska kostnaderna för driften av elnätet och tillåta integrering av mer förnybara energikällor. Dessutom kan dynamisk rating göra förnybar energi mer tillgänglig genom att minska de investeringar som krävs för att tillgodose efterfrågan på elektricitet och möjliggöra snabbare och billigare anslutning till elnätet.

Place, publisher, year, edition, pages
Stockholm,: KTH Royal Institute of Technology, 2020. p. 84
Series
TRITA-EECS-AVL ; 2020:3
Keywords
dynamic rating, dynamic line rating, dynamic transformer rating, power transformers, power system optimization, wind farm planning
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-266363 (URN)978-91-7873-390-3 (ISBN)
Public defence
2020-01-31, Kollegiesalen, Brinellvägen 8, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Swedish Energy AgencySweGRIDS - Swedish Centre for Smart Grids and Energy Storage, FPS18StandUp for Wind
Note

QC 20200109

Available from: 2020-01-09 Created: 2020-01-09 Last updated: 2020-01-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Morozovska, KaterynaNaim, WadihShayesteh, EbrahimHilber, Patrik

Search in DiVA

By author/editor
Morozovska, KaterynaNaim, WadihShayesteh, EbrahimHilber, Patrik
By organisation
Electromagnetic Engineering
In the same journal
International Journal of Electrical Power & Energy Systems
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 85 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf