Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Shock effects on delta wing vortex breakdown
Univ Glasgow, Dept Aerosp Engn.
NLR, Natl Aerosp Lab, Dept Flight Phys & Loads, Aerosp Vehicles Div.
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
USAF Acad, Dept Aeronaut, Colorado Springs.
Show others and affiliations
2009 (English)In: Journal of Aircraft, ISSN 0021-8669, E-ISSN 1533-3868, Vol. 46, no 3, 903-914 p.Article in journal (Refereed) Published
Abstract [en]

It has been observed that delta wings placed in a transonic freestream can experience a sudden movement of the vortex breakdown location as the angle of incidence is increased. The current paper uses computational fluid dynamics to examine this behavior in detail. The study shows that a shock/vortex interaction is responsible. The balance of the vortex strength and axial flow and the shock strength are examined to provide an explanation of the sensitivity of the breakdown location. Limited experimental data are available to supplement the computational fluid dynamics results in certain key respects, and the ideal synergy between computational fluid dynamics and experiments for this problem is considered.

Place, publisher, year, edition, pages
2009. Vol. 46, no 3, 903-914 p.
Keyword [en]
Angle of Incidence, Delta wing vortices, Delta wings, Experimental data, Free-stream, Shock strength, Vortex breakdown location, Vortex strength, Delta wing aircraft, Fluid dynamics
National Category
Vehicle Engineering
Identifiers
URN: urn:nbn:se:kth:diva-8479DOI: 10.2514/1.38792ISI: 000266894200017Scopus ID: 2-s2.0-67651065245OAI: oai:DiVA.org:kth-8479DiVA: diva2:13814
Note

QC 20100713. Uppdaterad från konferensbidrag till artikel (20100713).

Available from: 2008-05-16 Created: 2008-05-16 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Advances in vortical flow prediction methods for design of delta-winged aircraft
Open this publication in new window or tab >>Advances in vortical flow prediction methods for design of delta-winged aircraft
2008 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

This thesis covers the field of vortex-flow dominated external aerodynamics. As part of the contribution to the AVT-113 task group it was possible to prove the feasibility of high Reynolds number CFD computations to resolve and thus better understand the peculiar dual vortex system encountered on the VFE-2 blunt leading edge delta wing at low to moderate incidences. Initial investigations into this phenomenon seemed to undermine the hypothesis, that the formation of the inner vortex system depends on the laminar/turbulent state of the boundary layer at separation onset. As a result of this research, the initial hypothesis had to be expanded to account also for high Reynolds number cases, where a laminar boundary layer at separation onset can be excluded.

In addition, unsteady transonic computations are used to shed light on a highly non-linear phenomenon encountered at high angles of incidence. At certain conditions, the increase of the incidence by a single degree leads to a sudden movement of the vortex breakdown location from the trailing edge to mid-chord.

The lessons learned from the contribution to the VFE-2 facet are furthermore used to prove the technology readiness level of the tools within the second facet of AVT-113, the Cranked Arrow Wing Aerodynamics Project International (CAWAPI). The platform for this investigation, the F-16XL aircraft, experiences at high transonic speeds and low incidence a complex interaction between the leading edge vortex and a strong, mid-chord shock wave.

A synergetic effect of VFE-2 with a further project, the Environmentally friendly High Speed Aircraft (HISAC), is also presented in this thesis. Reynolds number dependence is documented in respect to leading edge vortex formation of the wing planform for a reference HISAC configuration. Furthermore, proof is found for a similar dual vortex system as for the VFE-2 blunt leading edge configuration.

Place, publisher, year, edition, pages
Stockholm: KTH, 2008. viii, 38 p.
Series
Trita-AVE, ISSN 1651-7660 ; 2008:30
Keyword
delta wing, slender wing, aircraft, vortex, VFE-2, CAWAPI, HISAC
National Category
Vehicle Engineering
Identifiers
urn:nbn:se:kth:diva-4761 (URN)978-91-7178-970-9 (ISBN)
Public defence
2008-06-09, F3, KTH, Lindstedtsvägen 26, Stockholm, 10:15
Opponent
Supervisors
Note
QC 20100713Available from: 2008-05-16 Created: 2008-05-16 Last updated: 2010-07-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Crippa, Simone
By organisation
Aeronautical and Vehicle Engineering
In the same journal
Journal of Aircraft
Vehicle Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 82 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf