Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A rule-based approach to syntactic and semantic composition of BOMs
Swedish Defence Research Agency, FOI.
KTH, School of Information and Communication Technology (ICT), Communication: Services and Infrastucture, Software and Computer Systems, SCS.
KTH, School of Information and Communication Technology (ICT), Communication: Services and Infrastucture, Software and Computer Systems, SCS.
KTH, School of Information and Communication Technology (ICT).
Show others and affiliations
2007 (English)In: 11th IEEE International Symposium on Distrubuted Simulation and Real Time Applications, 2007, 145-155 p.Conference paper, Published paper (Refereed)
Abstract [en]

Creating simulation models via composition of predefined and reusable components is an efficient way of reducing costs and time associated with the simulation model development process. However, in order to successfully compose models one has to solve the issues of syntactic and semantic composability of components. HLA is the most widely used architecture for distributed simulations today. It provides a simulation environment and standards for specifying simulation parts and interactions between simulation parts. But it provides little support for semantic composability. The Base Object Model (BOM) standard is an attempt to ease reusability and composition of simulation models. However, BOMs do not contain sufficient information for defining concepts and terms in order to avoid ambiguity, and provide no methods for matching conceptual models (state machines).

In this paper, we present our approach for enhancement of the semantic contents of BOMs and propose a three-layer model for syntactic and semantic matching of BOMs. The semantic enhancement includes ontologies for entities, event and interactions in each component. We also present an OWL-S description for each component including the state machines. The three-layer model, consists of syntactic matching, static semantic matching and dynamic semantic matching utilising a set of rules for reasoning about the compositions. We also describe our discovery and matching rules, which have been implemented in the Jess inference engine. In order to test our approach we have defined some simulation scenarios and implemented BOMs as building blocks for development of those scenarios, one of which has been presented in this paper. Our result shows that the three-layer model is promising and can improve and simplify composition of BOM-based components.

Place, publisher, year, edition, pages
2007. 145-155 p.
Series
IEEE/ACM International Symposium on Distributed Simulation and Real-Time Applications, ISSN 1550-6525
Keyword [en]
Chemical analysis, Dielectric relaxation, Flow interactions, Information theory, Ontology, Semantics, Standards, Structure (composition), Syntactics, Technical presentations, XML, And real time, Building blocks, Composability, Conceptual modelling, Distributed simulations, Dynamic semantic, In order, International symposium, Matching rules, object modelling, Reducing costs, Reusable components, Rule-based approaches, Semantic composition, Semantic contents, Semantic matching, Set of rules, simulation environments, simulation modelling, State-machines, Syntactic matching, Three-layer models
National Category
Telecommunications
Identifiers
URN: urn:nbn:se:kth:diva-8517DOI: 10.1109/DS-RT.2007.10ISI: 000251799200019Scopus ID: 2-s2.0-46449118857OAI: oai:DiVA.org:kth-8517DiVA: diva2:13862
Note
QC 20100830Available from: 2008-05-26 Created: 2008-05-26 Last updated: 2010-08-30Bibliographically approved
In thesis
1. A Framework for Component Based Modelling and Simulation using BOMs and Semantic Web Technology
Open this publication in new window or tab >>A Framework for Component Based Modelling and Simulation using BOMs and Semantic Web Technology
2008 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Modelling and Simulation (M&S) is a multi-disciplinary field that is widely used in various domains. It provides a means to study complex systems before actual physical prototyping and helps lowering, amongst others, manufacturing and training costs. However, as M&S gains more popularity, the demand on reducing time and resource costs associated with development and validation of simulation models has also increased. Composing simulation models of reusable and validated simulation components is one approach for addressing the above demand. This approach, which is still an open research issue in M&S, requires a composition process that is able to support a modeller with discovery and identification of components as well as giving feedback on feasibility of a composition. Combining components in order to build new simulations raise the non-trivial issue of composability.

Composability has been defined as the capability to select and assemble reusable simulation components in various combinations into simulation systems to meet user requirements. There are three main types of composability, syntactic, semantic and pragmatic. Syntactic composability is concerned with the compatibility of implementation details, such as parameter passing mechanisms, external data accesses, and timing mechanisms. It is the question of whether a set of components can be combined. Semantic composability, on the other hand, is concerned with the validity of the composition, and whether the composed simulation is meaningful. Pragmatic composability is yet another type which is concerned with the context of the simulation, and whether the composed simulation meets the intended purpose of the modeller. Of these three types syntactic composability is easiest to accomplish and some significant progresses on this issue have been reported in the literature. Semantic and pragmatic composability are much harder to achieve and has inspired many researchers to conduct both theoretical and experimental research.

The Base Object Model (BOM) is a new concept identified within M&S community as a potential facilitator for providing reusable model components for the rapid construction and modification of simulations. Although BOMs exhibit good capabilities for reuse and composability they lack the required semantic information for semantic matching and composition. There is little support for defining concepts and terms in order to avoid ambiguity, and there is no method for matching behaviour of conceptual models (i.e., state machines of the components), which is required for reasoning about the validity of BOM compositions.

In this work we have developed a framework for component-based model development that supports both syntactic and semantic composability of simulation models by extending the BOM concept using ontologies, Semantic Web and Web Services technologies, and developing a rule-based method for reasoning about BOM compositions. The issue of pragmatic composability has not been the focus of this work, and it has only been partly addressed. The framework utilises intelligent agents to perform discovery and composition of components, according to the modeller needs. It includes a collaborative environment, a semantic distributed repository and an execution environment to support model development and execution process.

The basic assumption of this work is that semantic composability should be achieved at conceptual level. Through precise definition and specification of components’ semantic and syntax one can capture the basic requirements for matching and semantically meaningful composition of those components. This requires a common methodology for specification of simulation components. The specification methodology consists of meta-models describing simulation components at different levels. In order to enable automatic matching of meta-models they are formalized and structured using Semantic Web technology in OWL (Web Ontology Language). Hence, the models are based on ontologies to avoid misunderstanding and to provide unambiguous definitions as a basis for reasoning about syntactic and semantic validity of compositions.

Place, publisher, year, edition, pages
Stockholm: KTH, 2008. xii, 84 p.
Series
Trita-ICT-ECS AVH, ISSN 1653-6363 ; 08:05
Keyword
Computer science
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-4770 (URN)978-91-7178-957-0 (ISBN)
Public defence
2008-05-23, Sal D, KTH-Forum, Isafjordsgatan 39, Kista, 13:00
Opponent
Supervisors
Note
QC 20100830Available from: 2008-05-26 Created: 2008-05-26 Last updated: 2010-08-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Moradi, FarshadAyani, RassulMokarizadeh, ShahabAkbari Shahmirzadi, Gholam Hossein
By organisation
Software and Computer Systems, SCSSchool of Information and Communication Technology (ICT)
Telecommunications

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 138 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf