Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Assessment of computational weld mechanics concepts for estimation of residual stresses in welded box structures
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. Chalmers University of Technology, Chalmersplatsen 4, Gothenburg, 41296, Sweden.ORCID iD: 0000-0003-4180-4710
2019 (English)In: 3rd International Conference on Structural Integrity, (ICSI 2019) / [ed] Moreira, PMGP Tavares, PJS, Elsevier, 2019, Vol. 17, p. 704-711Conference paper, Published paper (Refereed)
Abstract [en]

In this study finite element simulation approaches (lumping and prescribed temperature) are implemented to study residual stress distribution in a welded box type structure. This component is a vital part in several load carrying structural applications and the residual stresses are important to quantify from a structural integrity point of view. The thermal history from simulations has been verified with experimental measurements. The residual stresses at the weld toe side were measured, using X-ray diffraction technique. It is shown that a similar trend of residual stress state was captured by the simulation, compared to experimental measurements. The estimated residual stresses from the cases of welds with full penetration and partial penetration are slightly different along the crack path. Compressive residual stress was near the area of both weld toe and root while tensile residual stress was in the center of the weld with the magnitude up to 820 MPa. Moreover, a sub model of the welded box type structure is studied using the following computational weld mechanics concepts: Thermo -elastic -plastic, lumping and prescribed temperature, in order to assess the computational time and the magnitude of estimated residual stresses.

Place, publisher, year, edition, pages
Elsevier, 2019. Vol. 17, p. 704-711
Series
Procedia Structural Integrity, ISSN 2452-3216 ; 17
Keywords [en]
Finite element method, residual stresses, welding simulation, welded box structures
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-266724DOI: 10.1016/j.prostr.2019.08.094ISI: 000505162900093Scopus ID: 2-s2.0-85074669361OAI: oai:DiVA.org:kth-266724DiVA, id: diva2:1386438
Conference
3rd International Conference on Structural Integrity, ICSI 2019; Funchal, Madeira; Portugal; 2 September 2019 through 5 September 2019
Note

QC 20200117

Available from: 2020-01-17 Created: 2020-01-17 Last updated: 2020-01-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Khurshid, MansoorBarsoum, Zuheir

Search in DiVA

By author/editor
Zhu, JinchaoKhurshid, MansoorBarsoum, Zuheir
By organisation
Aeronautical and Vehicle Engineering
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 34 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf