Change search
ReferencesLink to record
Permanent link

Direct link
Geomorphometric feature analysis using morphometric parameterization and artificial neural networks
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Environmental and Natural Resources Information System.
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Environmental and Natural Resources Information System.
2008 (English)In: Geomorphology, ISSN 0169-555X, Vol. 99, no 1-4, 1-12 p.Article in journal (Refereed) Published
Abstract [en]

This paper presents a semi-automatic method using an unsupervised neural network to analyze geomorphometric features as landform elements. The Shuttle Radar Topography Mission (SRTM) provided detailed digital elevation models (DEMs) for all land masses between 60 degrees N and 57 degrees S. Exploiting these data for recognition and extraction of geomorphometric features is a challenging task. Results obtained with two methods, Wood's morphometric parameterization and the Self Organizing Map (SOM), are presented in this paper.

Four morphometric parameters (slope, minimum curvature, maximum curvature and cross-sectional curvature) were derived by fitting a bivariate quadratic surface with a window size of 5 by 5 to the SRTM DEM. These parameters were then used as input to the two methods. Wood's morphometric parameterization provides point-based features (peak, pit and pass), line-based features (channel and ridge) and area-based features (planar). Since point-based features are defined as having a very small slope when their neighbors are considered, two tolerance values (slope tolerance and curvature tolerance) are introduced. Selection of suitable values for the tolerance parameters is crucial for obtaining useful results.

The SOM as an unsupervised neural network algorithm is employed for the classification of the same morphometric parameters into ten classes characterized by morphometric position (crest, channel, ridge and plan area) subdivided by slope ranges. These terrain features are generic landform element and can be used to improve mapping and modeling of soils, vegetation, and land use, as well as ecological, hydrological and geomorphological features. These landform elements are the smallest homogeneous divisions of the land surface at the given resolution. The result showed that the SOM is an efficient scalable tool for analyzing geomorphometric features as meaningful landform elements, and uses the, full potential of morphometric characteristics.

Place, publisher, year, edition, pages
2008. Vol. 99, no 1-4, 1-12 p.
Keyword [en]
Self Organizing Map; morphometric feature; neural network; landform
National Category
Engineering and Technology
URN: urn:nbn:se:kth:diva-8591DOI: 10.1016/j.geomorph.2007.10.002ISI: 000257696000001ScopusID: 2-s2.0-44849093530OAI: diva2:13956
QC 20100727. Uppdaterad från in press till published (20100727).Available from: 2008-06-02 Created: 2008-06-02 Last updated: 2010-07-27Bibliographically approved
In thesis
1. Morphometric and Landscape Feature Analysis with Artificial Neural Networks and SRTM data: Applications in Humid and Arid Environments
Open this publication in new window or tab >>Morphometric and Landscape Feature Analysis with Artificial Neural Networks and SRTM data: Applications in Humid and Arid Environments
2008 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

This thesis presents a semi-automatic method to analyze morphometric features and landscape elements based on Self Organizing Map (SOM) as an unsupervised Artificial Neural Network algorithm in two completely different environments: 1) the Man and Biosphere Reserve “Eastern Carpathians” (Central Europe) as a complex mountainous humid area and 2) Lut Desert, Iran, a hyper arid region characterized by repetition of wind-eroded features.

In 2003, the National Aeronautics and Space Administration (NASA) released the SRTM/ SIR-C band data with 3 arc seconds (approx. 90 m resolution) grid for approximately 80 % of Earth’s land surface. The X-band SRTM data were processed with a 1 arc second (approx. 30 m resolution) grid by the German space agency, DLR and the Italian space agency ASI, but due to the smaller X-SAR ground swath, large areas are not covered. The latest version 3.0 SRTM/C DEM and SRTM/X band DEM were re-projected to 90 and 30 m UTM grid and used to generate morphometric parameters of first order (slope) and second order (cross-sectional curvature, maximum curvatures and minimum curvature) by using a bivariate quadratic surface. The morphometric parameters are then used in a SOM to identify morphometric features (or landform elements) e.g. planar, channel, ridge in mountainous areas or yardangs (ridge) and corridors (valley) in hyper-arid areas.

Geomorphic phenomena and features are scale-dependent and the characteristics of features vary when measured over different spatial extents or different spatial resolution. Morphometric parameters were derived for nine window sizes of the 90 m DEM ranging from 5 × 5 to 55 ×55. Analysis of the SOM output represents landform entities with ground areas from 450 m to 4950 m that is local to regional scale features. Effect of two SRTM resolutions, C and X bands is studied on morphometric feature identification. The difference change analysis revealed the quantity of resolution dependency of morphometric features. Increasing the DEM spatial resolution from 90 to 30 m (corresponding to X band) by interpolation resulted in a significant improvement of terrain derivatives and morphometric feature identification.

Integration of morphometric parameters with climate data (e.g. Sum of active temperature above 10 ° C) in SOM resulted in delineation of morphologically homogenous discrete geo-ecological units. These units were reclassified to produce a Potential Natural Vegetation map. Finally, we combined morphometric parameters and remotely sensed spectral data from Landsat ETM+ to identify and characterize landscape elements. The single integrated data set of geo-ecosystems shows the spatial distribution of geomorphic, climatic and biotic/cultural properties in the Eastern Carpathians.

The results demonstrate that a SOM is a very efficient tool to analyze geo-morphometric features under diverse environmental conditions and at different scales and resolution. Finer resolution and decreasing window size reveals information that is more detailed while increasing window size and coarser resolution emphasizes more regional patterns. It was also successfully applied to integrate climatic, morphometric parameters and Landsat ETM+ data for landscape analysis. Despite the stochastic nature of SOM, the results are not sensitive to randomization of initial weight vectors if many iterations are used. This procedure is reproducible with consistent results.

Abstract [sv]

Avhandlingen presenterar en halvautomatisk metod för att analysera morfometriska kännetecken och landskapselement som bygger på Self Organizing Map (SOM), en oövervakad Artificiell Neural Nätverk algoritm, i två helt skilda miljöer: 1) Man and Biosphere Reserve "Eastern Carpathians" (Centraleuropa) som är ett komplext, bergigt och humid område och 2) Lut öken, Iran, en extrem torr region som kännetecknas av återkommande vinderoderade objekt.

Basen för undersökningen är det C-band SRTM digital höjd modell (DEM) med 3 bågsekunder rutnät som National Aeronautics and Space Administration släppte 2003 för ungefär 80 % av jordens yta. Dessutom används i ett mindre område X-band SRTM DEM med 1 bågsekund rutnät av den tyska rymdagenturen DLR. DEM transformerades till 90 och 30 m UTM nätet och därav genererades morfometriska parametrar av första (lutning) och andra ordning (tvärsnittböjning, största och minsta böjning). De morfometriska parametrar används sedan i en SOM för att identifiera morfometriska objekt (eller landform element) t.ex. plan yta, kanal, kam i bergsområden eller yardangs (kam) och korridorer (dalgångar) i extrem torra områden.

Geomorfiska fenomen och objekt är skalberoende och kännetecken varierar med geografiska områden och upplösning. Morfometriska parametrar har härletts från 90 m DEM för nio fönsterstorlekar från 5 × 5 till 55 × 55. Resultaten representerar landform enheter för områden från 450 m till 4950 m på marken dvs. lokal till regional skala. Inflytande av två SRTM upplösningar i C och X-banden har studerats för identifikation av morfometriska objekt. Förändringsanalys visade storleken av upplösningsberoende av morfometriska objekt. Ökning av DEM upplösningen från 90 till 30 m (motsvarande X-bandet) genom interpolation resulterade i en betydande förbättring av terräng parametrar och identifiering av morfometriska objekt.

Integration av morfometriska parametrar med klimatdata (t.ex. summan av aktiv temperatur över 10° C) i SOM resulterade i avgränsningen av homogena geoekologiska enheter. Dessa enheter ha används för att producera en karta av potentiell naturlig vegetation. Slutligen har vi kombinerat morfometriska parametrar och multispektrala fjärranalysdata från Landsat ETM för att identifiera och karaktärisera landskapselement. Dessa integrerade ekosystem data visar den geografiska fördelningen av morfometriska, klimatologiska och biotiska/kulturella egenskaper i östra Karpaterna.

Resultaten visar att SOM är ett mycket effektivt verktyg för att analysera geomorfometriska egenskaper under skilda miljöförhållanden, i olika skalor och upplösningar. Finare upplösning och minskad fönsterstorlek visar information som är mer detaljerad. Ökad fönsterstorlek och grövre upplösning betonar mer regionala mönster. Det var också mycket framgångsrikt att integrera klimatiska och morfometriska parametrar med Landsat ETM data för landskapsanalys. Trots den stokastiska natur av SOM, är resultaten inte känsliga för slumpvisa värden i de ursprungliga viktvektorerna när många iterationer används. Detta förfarande är reproducerbart med bestående resultat.

Place, publisher, year, edition, pages
Stockholm: KTH, 2008. viii, 71 p.
Self Organizing Map, Neural Network, Morphometric Feature, Landscape, Yardang, Lut Desert, Potential natural vegetation, geoecosystem, Landform, Landsat ETM+, Morphometric Parameters, SRTM, Resolution, Curvatures, DEM.
National Category
Engineering and Technology
urn:nbn:se:kth:diva-4789 (URN)978-91-7415-010-0 (ISBN)
Public defence
2008-06-11, F3, Lindstedsvägen 26, 13:15
QC 20100924Available from: 2008-06-02 Created: 2008-06-02 Last updated: 2011-09-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Ehsani, Amir HoushangQuiel, Friedrich
By organisation
Environmental and Natural Resources Information System
In the same journal
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 186 hits
ReferencesLink to record
Permanent link

Direct link