Change search
ReferencesLink to record
Permanent link

Direct link
Contribution of Landsat ETM+ thermal band to land cover classification using SMAP and ML algorithms (Case study; Eastern Carpathians)
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Environmental and Natural Resources Information System.
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Environmental and Natural Resources Information System.
2007 (English)In: Image and Signal Processing for Remote Sensing XIII: Florence; 18 September 2007 through 20 September 2007 / [ed] Bruzzone, L., 2007, 67481F-1-67481F-12 p.Conference paper (Refereed)
Abstract [en]

Landsat Thermal band measures the emitted radiation of the earth surface. In many studies the ETM+ thermal band with 60 meter resolution is excluded from processing and classification despite the valuable information content.

Two different methods of Bayesian segmentation algorithm were used with different band combinations. Sequential Maximum a Posteriori (SMAP) is a Bayesian image segmentation algorithm which unlike the traditional Maximum likelihood (ML) classification attempts to improve accuracy by taking contextual information into account, rather than classifying pixels separately.

Landsat 7 ETM+ data with Path/Row 186-26, dated 30 September 2000 were used. In order to study the role of thermal band with these methods, two data sets with and without the thermal band were used. Nine band combinations including ETM+ and Principal Component (PC) data were selected based on the highest value of Optimum Index Factor (OIF). Using visual and digital analysis, field observation data and auxiliary map data like CORINE land cover, 14 land cover classes are identified. Spectral signatures were derived for every land cover. Spectral signatures as well as feature space analysis were used for detailed analysis of efficiency of the reflective and thermal bands.

The result shows that SMAP as the superior method can improve Kappa values compared with ML algorithm for all band combinations with on average 17%. Using all 7 bands both SMAP and ML classifications algorithm achieved the highest Kappa accuracy of 80.37 % and 64.36 % respectively. Eliminating the thermal band decreased the Kappa values by about 8% for both algorithms. The band combination including PCI, 2, 3, and 4 (PCA calculated for all 7 bands) produced the same Kappa as bands 3, 4, 5 and 6. The Kappa value for band combination 3, 4, 5 and 6 was also about 4% higher than using 6 bands without the thermal band for both algorithms.

Contextual classification algorithm like SMAP can significantly improve classification results. The thermal band bears complementary information to other spectral bands and despite the lower spatial resolution improves classification accuracy.

Place, publisher, year, edition, pages
2007. 67481F-1-67481F-12 p.
, Proceedings of SPIE - The International Society for Optical Engineering, ISSN 0277-786X ; 6748
Keyword [en]
SMAP; landsat ETM; thermal band; maximum likelihood
National Category
Engineering and Technology
URN: urn:nbn:se:kth:diva-8599DOI: 10.1117/12.737841ISI: 000253478400040ScopusID: 2-s2.0-42449113779ISBN: 978-0-8194-6906-9OAI: diva2:13964
QC 20100728Available from: 2008-06-02 Created: 2008-06-02 Last updated: 2010-07-28Bibliographically approved
In thesis
1. Morphometric and Landscape Feature Analysis with Artificial Neural Networks and SRTM data: Applications in Humid and Arid Environments
Open this publication in new window or tab >>Morphometric and Landscape Feature Analysis with Artificial Neural Networks and SRTM data: Applications in Humid and Arid Environments
2008 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

This thesis presents a semi-automatic method to analyze morphometric features and landscape elements based on Self Organizing Map (SOM) as an unsupervised Artificial Neural Network algorithm in two completely different environments: 1) the Man and Biosphere Reserve “Eastern Carpathians” (Central Europe) as a complex mountainous humid area and 2) Lut Desert, Iran, a hyper arid region characterized by repetition of wind-eroded features.

In 2003, the National Aeronautics and Space Administration (NASA) released the SRTM/ SIR-C band data with 3 arc seconds (approx. 90 m resolution) grid for approximately 80 % of Earth’s land surface. The X-band SRTM data were processed with a 1 arc second (approx. 30 m resolution) grid by the German space agency, DLR and the Italian space agency ASI, but due to the smaller X-SAR ground swath, large areas are not covered. The latest version 3.0 SRTM/C DEM and SRTM/X band DEM were re-projected to 90 and 30 m UTM grid and used to generate morphometric parameters of first order (slope) and second order (cross-sectional curvature, maximum curvatures and minimum curvature) by using a bivariate quadratic surface. The morphometric parameters are then used in a SOM to identify morphometric features (or landform elements) e.g. planar, channel, ridge in mountainous areas or yardangs (ridge) and corridors (valley) in hyper-arid areas.

Geomorphic phenomena and features are scale-dependent and the characteristics of features vary when measured over different spatial extents or different spatial resolution. Morphometric parameters were derived for nine window sizes of the 90 m DEM ranging from 5 × 5 to 55 ×55. Analysis of the SOM output represents landform entities with ground areas from 450 m to 4950 m that is local to regional scale features. Effect of two SRTM resolutions, C and X bands is studied on morphometric feature identification. The difference change analysis revealed the quantity of resolution dependency of morphometric features. Increasing the DEM spatial resolution from 90 to 30 m (corresponding to X band) by interpolation resulted in a significant improvement of terrain derivatives and morphometric feature identification.

Integration of morphometric parameters with climate data (e.g. Sum of active temperature above 10 ° C) in SOM resulted in delineation of morphologically homogenous discrete geo-ecological units. These units were reclassified to produce a Potential Natural Vegetation map. Finally, we combined morphometric parameters and remotely sensed spectral data from Landsat ETM+ to identify and characterize landscape elements. The single integrated data set of geo-ecosystems shows the spatial distribution of geomorphic, climatic and biotic/cultural properties in the Eastern Carpathians.

The results demonstrate that a SOM is a very efficient tool to analyze geo-morphometric features under diverse environmental conditions and at different scales and resolution. Finer resolution and decreasing window size reveals information that is more detailed while increasing window size and coarser resolution emphasizes more regional patterns. It was also successfully applied to integrate climatic, morphometric parameters and Landsat ETM+ data for landscape analysis. Despite the stochastic nature of SOM, the results are not sensitive to randomization of initial weight vectors if many iterations are used. This procedure is reproducible with consistent results.

Abstract [sv]

Avhandlingen presenterar en halvautomatisk metod för att analysera morfometriska kännetecken och landskapselement som bygger på Self Organizing Map (SOM), en oövervakad Artificiell Neural Nätverk algoritm, i två helt skilda miljöer: 1) Man and Biosphere Reserve "Eastern Carpathians" (Centraleuropa) som är ett komplext, bergigt och humid område och 2) Lut öken, Iran, en extrem torr region som kännetecknas av återkommande vinderoderade objekt.

Basen för undersökningen är det C-band SRTM digital höjd modell (DEM) med 3 bågsekunder rutnät som National Aeronautics and Space Administration släppte 2003 för ungefär 80 % av jordens yta. Dessutom används i ett mindre område X-band SRTM DEM med 1 bågsekund rutnät av den tyska rymdagenturen DLR. DEM transformerades till 90 och 30 m UTM nätet och därav genererades morfometriska parametrar av första (lutning) och andra ordning (tvärsnittböjning, största och minsta böjning). De morfometriska parametrar används sedan i en SOM för att identifiera morfometriska objekt (eller landform element) t.ex. plan yta, kanal, kam i bergsområden eller yardangs (kam) och korridorer (dalgångar) i extrem torra områden.

Geomorfiska fenomen och objekt är skalberoende och kännetecken varierar med geografiska områden och upplösning. Morfometriska parametrar har härletts från 90 m DEM för nio fönsterstorlekar från 5 × 5 till 55 × 55. Resultaten representerar landform enheter för områden från 450 m till 4950 m på marken dvs. lokal till regional skala. Inflytande av två SRTM upplösningar i C och X-banden har studerats för identifikation av morfometriska objekt. Förändringsanalys visade storleken av upplösningsberoende av morfometriska objekt. Ökning av DEM upplösningen från 90 till 30 m (motsvarande X-bandet) genom interpolation resulterade i en betydande förbättring av terräng parametrar och identifiering av morfometriska objekt.

Integration av morfometriska parametrar med klimatdata (t.ex. summan av aktiv temperatur över 10° C) i SOM resulterade i avgränsningen av homogena geoekologiska enheter. Dessa enheter ha används för att producera en karta av potentiell naturlig vegetation. Slutligen har vi kombinerat morfometriska parametrar och multispektrala fjärranalysdata från Landsat ETM för att identifiera och karaktärisera landskapselement. Dessa integrerade ekosystem data visar den geografiska fördelningen av morfometriska, klimatologiska och biotiska/kulturella egenskaper i östra Karpaterna.

Resultaten visar att SOM är ett mycket effektivt verktyg för att analysera geomorfometriska egenskaper under skilda miljöförhållanden, i olika skalor och upplösningar. Finare upplösning och minskad fönsterstorlek visar information som är mer detaljerad. Ökad fönsterstorlek och grövre upplösning betonar mer regionala mönster. Det var också mycket framgångsrikt att integrera klimatiska och morfometriska parametrar med Landsat ETM data för landskapsanalys. Trots den stokastiska natur av SOM, är resultaten inte känsliga för slumpvisa värden i de ursprungliga viktvektorerna när många iterationer används. Detta förfarande är reproducerbart med bestående resultat.

Place, publisher, year, edition, pages
Stockholm: KTH, 2008. viii, 71 p.
Self Organizing Map, Neural Network, Morphometric Feature, Landscape, Yardang, Lut Desert, Potential natural vegetation, geoecosystem, Landform, Landsat ETM+, Morphometric Parameters, SRTM, Resolution, Curvatures, DEM.
National Category
Engineering and Technology
urn:nbn:se:kth:diva-4789 (URN)978-91-7415-010-0 (ISBN)
Public defence
2008-06-11, F3, Lindstedsvägen 26, 13:15
QC 20100924Available from: 2008-06-02 Created: 2008-06-02 Last updated: 2011-09-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Ehsani, Amir HoushangQuiel, Friedrich
By organisation
Environmental and Natural Resources Information System
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 75 hits
ReferencesLink to record
Permanent link

Direct link