Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A novel electrical and optical confinement scheme for surface emitting optoelectronic devices
KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.ORCID iD: 0000-0002-9040-4740
2006 (English)In: WORKSHOP ON OPTICAL COMPONENTS FOR BROADBAND COMMUNICATION / [ed] Fonjallaz, PY; Pearsall, TP, BELLINGHAM, WA: SPIE-INT SOC OPTICAL ENGINEERING , 2006, Vol. 6350, 63500J-1-63500J-10 p.Conference paper, Published paper (Refereed)
Abstract [en]

A novel electrical and optical confinement scheme for surface emitting optoelectronic devices is presented. The scheme is based on epitaxial regrowth of a pnp current blocking layer structure around a mesa etched in the vertical cavity region of the device. The lateral size and orientation of the mesa is defined lithographically and dry etching is used to create vertical mesa sidewalls. By orienting the mesa sidewalls in certain crystallographic directions, it is possible to selectively grow a current blocking pnp layer structure on the exposed n-type lower cladding layer of the cavity whithout obstructing the electrical injection into the active region. The concept is evaluated in 1.2-mu m GaAs-based light emitting diodes with InGaAs quantum wells. This type of structure can easily be used as the amplifying region of a vertical cavity laser, providing a good alternative to selective oxidation confinement.

Place, publisher, year, edition, pages
BELLINGHAM, WA: SPIE-INT SOC OPTICAL ENGINEERING , 2006. Vol. 6350, 63500J-1-63500J-10 p.
Series
Proceedings of SPIE, ISSN 0277-786X ; 6350
Keyword [en]
Mesa sidewalls; Optical confinement; Vertical cavity; Electric properties; Epitaxial growth; Light emitting diodes; Optical properties; Photolithography; Semiconductor quantum wells
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:kth:diva-8624DOI: 10.1117/12.692904ISI: 000241328400014Scopus ID: 2-s2.0-33749840435ISBN: 0-8194-6445-7 (print)OAI: oai:DiVA.org:kth-8624DiVA: diva2:13996
Conference
Workshop on Optical Components for Broadband Communication. Stockholm, SWEDEN. JUN 28-29, 2006
Note
QC 20100825 QC 20111004Available from: 2008-06-03 Created: 2008-06-03 Last updated: 2011-10-04Bibliographically approved
In thesis
1. Design and fabrication of long wavelength vertical cavity lasers on GaAs substrates
Open this publication in new window or tab >>Design and fabrication of long wavelength vertical cavity lasers on GaAs substrates
2008 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Vertical cavity surface emitting lasers (VCSELs) are today a commodity on the short wavelength laser market due to the ease with which they are manufactured. Much effort has in the last decade been directed towards making long wavelength VCSELs as successful in the marketplace. This has not been achieved due to the much more difficult fabrication technologies needed for realising high performance long wavelength VCSELs. At one point, GaInNAs quantum wells gain regions grown on GaAs substrates seemed to be the solution as it enabled all-epitaxial VCSELs that could make use of high contrast AlGaAs-based distributed Bragg reflectors (DBRs) as mirrors and lateral selective oxidation for optical and electrical confinement, thereby mimicking the successful design of short wavelength VCSELs. Although very good device results were achieved, reproducible and reliable epitaxial growth of GaInNAs quantum wells proved difficult and the technology has not made its way into high-volume production. Other approaches to the manufacturing and material problems have been to combine mature InP-based gain regions with high contrast AlGaAs-based DBRs by wafer fusion or with high contrast dielectric DBRs. Commonly, a patterned tunnel junction provides the electrical confinement in these VCSELs. Excellent performance has been achieved in this way but the fabrication process is difficult.

In this work, we have employed high strain InGaAs quantum wells along with large detuning between the gain peak and the emission wavelength to realize GaAs-based long wavelength VCSELs. All-epitaxial VCSELs with AlGaAs-based DBRs and lateral oxidation confinement were fabricated and evaluated. The efficiency of these VCSELs was limited due to the optical absorption in the doped DBRs. To improve the efficiency and manufacturability, two novel optical and electrical confinement schemes based on epitaxial regrowth of current blocking layers were developed. The first scheme is based on a single regrowth step and requires very precise processing. This scheme was therefore not developed beyond the first generation but single mode power of 0.3 mW at low temperature, -10ºC, was achieved. The second scheme is based on two epitaxial regrowth steps and does not require as precise processing. Several generations of this design were manufactured and resulted in record high power of 8 mW at low temperature, 5ºC, and more than 3 mW at high temperature, 85ºC. Single mode power was more modest with 1.5 mW at low temperature and 0.8 mW at high temperature, comparable to the performance of the single mode lateral oxidation confined VCSELs. The reason for the modest single mode power was found to be a non-optimal cavity shape after the second regrowth that leads to poor lateral overlap between the gain in the quantum wells and the intensity of the optical field.

Place, publisher, year, edition, pages
Stockholm: KTH, 2008. 79 p.
Series
Trita-ICT/MAP AVH, ISSN 1653-7610 ; 2008:10
Keyword
VCSEL, Selective Area Epitaxy, Epitaxial regrowth, Laser
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-4795 (URN)978-91-7178-990-7 (ISBN)
Public defence
2008-06-12, N2, Electrum 3, Isafjordsgatan 28 A/D, Kista, 10:00
Opponent
Supervisors
Note
QC 20100825Available from: 2008-06-03 Created: 2008-06-03 Last updated: 2010-08-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Hammar, Mattias

Search in DiVA

By author/editor
Marcks von Würtemberg, RickardZhang, ZhenzhongBerggren, JesperHammar, Mattias
By organisation
Microelectronics and Applied Physics, MAP
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 73 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf