Change search
ReferencesLink to record
Permanent link

Direct link
Robustness Analysis of Intracellular Oscillators with Application to the Circadian Clock
KTH, School of Electrical Engineering (EES), Automatic Control.
2008 (English)Licentiate thesis, monograph (Other scientific)
Abstract [en]

Periodic oscillations underlie many intracellular functions, such as circadian time keeping, cell cycle control and locomotor pattern generation in nerve cells. These intracellular oscillations are generated in intricate biochemical reaction networks involving genes, proteins and other biochemical components. In most cases, robust oscillations are of pivotal importance for the organism, i.e., the oscillations must be maintained in the presence of internal and external perturbations.

Model based analysis of robustness in intracellular oscillators has attracted considerable attention in recent years. The analysis has almost exclusively been based on either complete removal of network components, e.g., single genes, or perturbation of model parameters. In this thesis, a control theoretic approach to analyze structural robustness of intracellular oscillators is proposed. The method is based on adding dynamic perturbations to the network interactions. Determination of the smallest perturbation translating the underlying steady-state into a Hopf bifurcation point is used to quantify the robustness. The method can be used to determine critical substructures within the overall network and to identify specific network fragilities. Also, an approach to nonlinear model reduction based on the robustness analysis is proposed.

The proposed robustness analysis method is applied to elucidate mechanisms underlying robust oscillations in circadian clocks. Circadian clocks, molecular oscillators generating 24 hour rhythms in many organisms, are known to display a striking robustness towards internal and external perturbations. The underlying networks involve a large number of genes that are transcribed into mRNA which produce proteins subsequently regulating the activity of other genes, together forming an intricate network with a large number of embedded feedback loops. An often recurring hypothesis is that the interlocked feedback loop structure of circadian clocks serves the purpose of robustness. From analysis of several recently published models of circadian clocks, it is found in this thesis that the robustness of circadian clocks primarily results from a high gain in a single gene regulatory feedback loop generating the oscillations. This gain can be elevated by additional feedback loops, involving either gene regulation or post-translational feedback, but a similar robustness can be achieved by simply increasing the amplification within the master feedback loop.

Place, publisher, year, edition, pages
Stockholm: KTH , 2008. , vii, 102 p.
Trita-EE, ISSN 1653-5146 ; 2008:032
Keyword [en]
Systems Biology
National Category
Control Engineering
URN: urn:nbn:se:kth:diva-4815ISBN: 978-91-7415-032-2OAI: diva2:14110
2008-06-12, D41, KTH, Lindstedtsv 3, Stockholm, 10:15
QC 20101125Available from: 2008-06-09 Created: 2008-06-09 Last updated: 2010-11-25Bibliographically approved

Open Access in DiVA

fulltext(1218 kB)444 downloads
File information
File name FULLTEXT01.pdfFile size 1218 kBChecksum SHA-1
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Trané, Camilla
By organisation
Automatic Control
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 444 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 367 hits
ReferencesLink to record
Permanent link

Direct link