Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Lightweight Monitoring of Edge-Based Admission Control
KTH, School of Electrical Engineering (EES), Communication Networks.
KTH, School of Electrical Engineering (EES), Communication Networks.
KTH, School of Electrical Engineering (EES), Communication Networks.ORCID iD: 0000-0002-3704-1338
2006 (English)In: IEEE 2006 International Zurich Seminar on Digital Communications: Zurich: 22 February 2006 through 24 February 2006, 2006, 50-53 p.Conference paper, Published paper (Refereed)
Abstract [en]

This paper describes a software monitor that can control and police end-to-end admission control schemes. The monitor has low hardware requirements and it is well suited to be implemented in access routers or firewalls. We present a prototype implemented with commodity hardware and open source software which performs protocol compliance monitoring and can log and filter out single misbehaving flows. The protocol monitor can easily be extended to police other end to end protocols such as TCP, ensuring end-to-end QoS service level agreements with end users.

Place, publisher, year, edition, pages
2006. 50-53 p.
Keyword [en]
Electronic document identification systems; Network protocols; Quality of service; Routers; Edge based admission control; Open source softwares; Protocol compliance monitoring; Protocol monitors
National Category
Telecommunications
Identifiers
URN: urn:nbn:se:kth:diva-8724DOI: 10.1109/IZS.2006.1649076ISI: 000238975300011Scopus ID: 2-s2.0-33845581057ISBN: 1-4244-0092-9 (print)OAI: oai:DiVA.org:kth-8724DiVA: diva2:14122
Note
QC 20100826Available from: 2008-06-10 Created: 2008-06-10 Last updated: 2013-09-09Bibliographically approved
In thesis
1. On Admission Control for IP Networks Based on Probing
Open this publication in new window or tab >>On Admission Control for IP Networks Based on Probing
2008 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The current Internet design is based on a best-effort service, which combines high utilization of network resources with architectural simplicity. As a consequence of this design, the Internet is unable to provide guaranteed or predictable quality of service (QoS) to real-time services that have constraints on end-to-end delay, delay jitter and packet loss.

To add QoS capabilities to the present Internet, the new functions need to be simple to implement, while allowing high network utilization. In recent years, different methods have been investigated to provide the required QoS. Most of these methods include some form of admission control so that new flows are only admitted to the network if the admission does not decrease the quality of connections that are already in progress below some defined level. To achieve the required simplicity a new family of admission control methods, called end-to-end measurement-based admission control moves the admission decision to the edges of the network.

This thesis presents a set of methods for admission control based on measurements of packet loss. The thesis studies how to deploy admission control in an incremental way: First, admission control is included in the audiovisual real-time applications, without any support from the network. Second, admission control is enabled at the transport layer to differentiate between elastic and inelastic flows, by embedding the probing mechanism in UDP and using the inherent congestion control of TCP. Finally, admission control is deployed at the network layer by providing differentiated scheduling in the network for probe and data packets, which then allows the operator to control the blocking probability for the inelastic flows and the average throughput for the elastic flows.

The thesis offers a description of the incremental steps to provide QoS on a DiffServ-based Internet. It analyzes the proposed schemes and provides extensive figures of performance based on simulations and on real implementations. It also shows how the admission control can be used in multicast sessions by making the admission decision at the receiver.

The thesis provides as well two different mathematical analyses of the network layer admission control, which enable operators to obtain initial configuration parameters for the admission decision, like queue sizes, based on the forecasted or measured traffic volume.

The thesis ends by considering a new method for overload control in WLAN cells, closely based on the ideas for admission control presented in the rest of the articles.

Place, publisher, year, edition, pages
Stockholm: KTH, 2008. v, 37 p.
Series
Trita-EE, ISSN 1653-5146 ; 2008:026
Keyword
Admission control; QoS; IP networks
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-4818 (URN)978-91-7415-012-4 (ISBN)
Public defence
2008-06-13, KTH, 13:15
Opponent
Supervisors
Note
QC 20100826Available from: 2008-06-10 Created: 2008-06-10 Last updated: 2010-08-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Karlsson, Gunnar

Search in DiVA

By author/editor
Más, IgnacioBrage, JoelKarlsson, Gunnar
By organisation
Communication Networks
Telecommunications

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 73 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf