Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rational Design of Nanoarray Architectures for Electrocatalytic Water Splitting
Dalian Univ Technol, Inst Energy Sci & Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
Dalian Univ Technol, Inst Energy Sci & Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
Dalian Univ Technol, Inst Energy Sci & Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
Dalian Univ Technol, Inst Energy Sci & Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
Show others and affiliations
2019 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 29, no 20, article id 1808367Article, review/survey (Refereed) Published
Abstract [en]

Electrochemical water splitting is recognized as a practical strategy for impelling the transformation of sustainable energy sources such as solar energy from electricity to clean hydrogen fuel. To actualize the large-scale hydrogen production, it is paramount to develop low-cost, earth-abundant, efficient, and stable electrocatalysts. Among those electrocatalysts, alternative architectural arrays grown on conductive substrates have been proven to be highly efficient toward water splitting due to large surface area, abundant active sites, and synergistic effects between the electrocatalysts and the substrates. Herein, the advancement of nanoarray architectures in electrocatalytic applications is reviewed. The categories of different nanoarrays and the reliable and versatile synthetic approaches of electrocatalysts are summarized. A unique emphasis is highlighted on the promising strategies to enhance the electrocatalytic activities and stability of architectural arrays by component manipulation, heterostructure regulation, and vacancy engineering. The intrinsic mechanism analysis of electronic structure optimization, intermediates' adsorption facilitation, and coordination environments' amelioration is also discussed with regard to theoretical simulation and in situ identification. Finally, the challenges and opportunities on the valuable directions and promising pathways of architectural arrays toward outstanding electrocatalytic performance are provided in the energy conversion field, facilitating the development of promising water splitting systems.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2019. Vol. 29, no 20, article id 1808367
Keywords [en]
earth-abundant electrocatalysts, electrocatalytic water splitting, electrochemical energy, modulated strategies, nanoarray architectures
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-270820DOI: 10.1002/adfm.201808367ISI: 000471335500006Scopus ID: 2-s2.0-85060336829OAI: oai:DiVA.org:kth-270820DiVA, id: diva2:1414555
Available from: 2020-03-13 Created: 2020-03-13 Last updated: 2020-03-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Sun, Licheng

Search in DiVA

By author/editor
Sun, Licheng
By organisation
Chemistry
In the same journal
Advanced Functional Materials
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf