Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Reinforcement learning in a noisy fine grid environment
KTH, Superseded Departments, Numerical Analysis and Computer Science, NADA.
2004 (English)Report (Refereed)
Place, publisher, year, edition, pages
2004. no 36
Series
Trita-NA, ISSN 0348-2952 ; 0434
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-8798OAI: oai:DiVA.org:kth-8798DiVA: diva2:14232
Available from: 2005-11-23 Created: 2005-11-23 Last updated: 2011-09-21Bibliographically approved
In thesis
1. Towards a framework for reinforcement learning with artificial neural networks
Open this publication in new window or tab >>Towards a framework for reinforcement learning with artificial neural networks
2004 (English)Licentiate thesis, comprehensive summary (Other scientific)
Place, publisher, year, edition, pages
Stockholm: Numerisk analys och datalogi, 2004
Series
Trita-NA, ISSN 0348-2952 ; 0437
Keyword
aritficial neural networks, reinforcement learning, BCPNN, modularity, genetic algorithms
National Category
Computer Science
Identifiers
urn:nbn:se:kth:diva-500 (URN)91-7283-928-7 (ISBN)
Presentation
2004-12-10, E32, KTH, Lindstedsvägen 3, Stockholm, 13:00
Available from: 2005-11-23 Created: 2005-11-23 Last updated: 2012-03-21

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Raicevic, Peter
By organisation
Numerical Analysis and Computer Science, NADA
Computer Science

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 28 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf