Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Application of transfer entropy to causality detection and synchronization experiments in tokamaks
KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.ORCID iD: 0000-0001-7741-3370
KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
Show others and affiliations
Number of Authors: 11132016 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 56, no 2, article id 026006Article in journal (Refereed) Published
Abstract [en]

Determination of causal-effect relationships can be a difficult task even in the analysis of time series. This is particularly true in the case of complex, nonlinear systems affected by significant levels of noise. Causality can be modelled as a flow of information between systems, allowing to better predict the behaviour of a phenomenon on the basis of the knowledge of the one causing it. Therefore, information theoretic tools, such as the transfer entropy, have been used in various disciplines to quantify the causal relationship between events. In this paper, Transfer Entropy is applied to determining the information relationship between various phenomena in Tokamaks. The proposed approach provides unique insight about information causality in difficult situations, such as the link between sawteeth and ELMs and ELM pacing experiments. The application to the determination of disruption causes, and therefore to the classification of disruption types, looks also very promising. The obtained results indicate that the proposed method can provide a quantitative and statistically sound criterion to address the causal-effect relationships in various difficult and ambiguous situations if the data is of sufficient quality.

Place, publisher, year, edition, pages
IOP PUBLISHING LTD , 2016. Vol. 56, no 2, article id 026006
Keywords [en]
transfer entropy, causality detection, synchronization experiments, ELM pacing, disruption precursors
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:kth:diva-272033DOI: 10.1088/0029-5515/56/2/026006ISI: 000367934800006Scopus ID: 2-s2.0-84957005804OAI: oai:DiVA.org:kth-272033DiVA, id: diva2:1424064
Note

QC 20200416

Available from: 2020-04-16 Created: 2020-04-16 Last updated: 2020-04-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Bergsåker, HenricBykov, IgorElevant, ThomasFrassinetti, LorenzoGarcia Carrasco, AlvaroHellsten, TorbjörnIvanova, DaryaJonsson, ThomasMenmuir, SheenaPetersson, PerRachlew, ElisabethRubel, MarekStröm, PetterTholerus, SimonWeckmann, Armin
By organisation
Fusion Plasma PhysicsAtomic and Molecular Physics
In the same journal
Nuclear Fusion
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf