Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Performance of electron and photon triggers in ATLAS during LHC Run 2
Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0000-0001-6945-1916
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0000-0003-3867-0336
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0000-0002-8015-7512
Show others and affiliations
Number of Authors: 29262020 (English)In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 80, no 1, article id 47Article in journal (Refereed) Published
Abstract [en]

Electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential for the ATLAS experiment to record signals for a wide variety of physics: from StandardModel processes to searches for new phenomena in both proton-proton and heavy-ion collisions. To cope with a fourfold increase of peak LHC luminosity from 2015 to 2018 (Run 2), to 2.1 x 10(34) cm(-2) s(-1), and a similar increase in the number of interactions per beam-crossing to about 60, trigger algorithms and selections were optimised to control the rates while retaining a high efficiency for physics analyses. For proton-proton collisions, the single-electron trigger efficiency relative to a single-electron offline selection is at least 75% for an offline electron of 31 GeV, and rises to 96% at 60 GeV; the trigger efficiency of a 25GeVleg of the primary diphoton trigger relative to a tight offline photon selection is more than 96% for an offline photon of 30 GeV. For heavy-ion collisions, the primary electron and photon trigger efficiencies relative to the corresponding standard offline selections are at least 84% and 95%, respectively, at 5 GeV above the corresponding trigger threshold.

Place, publisher, year, edition, pages
SPRINGER , 2020. Vol. 80, no 1, article id 47
National Category
Subatomic Physics
Identifiers
URN: urn:nbn:se:kth:diva-271761DOI: 10.1140/epjc/s10052-019-7500-2ISI: 000519817900001Scopus ID: 2-s2.0-85078123210OAI: oai:DiVA.org:kth-271761DiVA, id: diva2:1424135
Note

QC 20200416

Available from: 2020-04-16 Created: 2020-04-16 Last updated: 2020-04-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Kastanas, Konstatinos A.

Search in DiVA

By author/editor
Kastanas, Konstatinos A.Jensen, BengtOhm, ChristianRipellino, GiuliaSidebo, P. EdvinStrandberg, Jonas
By organisation
Particle and Astroparticle Physics
In the same journal
European Physical Journal C
Subatomic Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf