Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analysis of plasma termination in the JET hybrid scenario
Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.ORCID iD: 0000-0002-9546-4494
Show others and affiliations
Number of Authors: 12342018 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 7, article id 076027Article in journal (Refereed) Published
Abstract [en]

This paper analyses the final phase of hybrid scenario discharges at JET, the reduction of auxiliary heating towards finally the Ohmic phase. The here considered Ohmic phase is mostly still in the current flattop but may also be in the current ramp down. For this purpose a database is created of 54 parameters in 7 phases distributed in time of the discharge. It is found that the occurrence of a locked mode is in most cases preceded by a radiation peaking after the main heating phase either in a low power phase and/or in the Ohmic phase. To gain insight on the importance of different parameters in this process a correlation analysis to the radiation peaking in the Ohmic phase is done. The first finding is that the further away in time the analysed phases are the less the correlation is. This means in the end that a good termination scenario might also be able to terminate unhealthy plasmas safely. The second finding is that remaining impurities in the plasma after reducing the heating power in the termination phase are the most important reason for generating a locked mode which can lead to a disruption.

Place, publisher, year, edition, pages
IOP PUBLISHING LTD , 2018. Vol. 58, no 7, article id 076027
Keywords [en]
magnetic fusion, disruptions, termination, hybrid scenario
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:kth:diva-270452DOI: 10.1088/1741-4326/aac526ISI: 000435104300001Scopus ID: 2-s2.0-85049867702OAI: oai:DiVA.org:kth-270452DiVA, id: diva2:1424298
Note

QC 20200416

Available from: 2020-04-16 Created: 2020-04-16 Last updated: 2020-04-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Bergsåker, HenricBykov, IgorFrassinetti, LorenzoGarcia-Carrasco, AlvaroHellsten, TorbjörnJohnson, ThomasMenmuir, SheenaPetersson, PerRachlew, ElisabethRatynskaia, SvetlanaRubel, MarekStefanikova, EsteraStröm, PetterTholerus, EmmiTolias, PanagiotisOlivares, Pablo VallejosWeckmann, ArminZhou, Yushun
By organisation
Fusion Plasma PhysicsFusion Plasma PhysicsPhysicsSpace and Plasma Physics
In the same journal
Nuclear Fusion
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf