Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
DIII-D research towards establishing the scientific basis for futurefusion reactors
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.ORCID iD: 0000-0002-9546-4494
Number of Authors: 4792017 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 11, article id 112002Article in journal (Refereed) Published
Abstract [en]

DIII-D research is addressing critical challenges in preparation for ITER and the next generation of fusion devices through focusing on plasma physics fundamentals that underpin key fusion goals, understanding the interaction of disparate core and boundary plasma physics, and developing integrated scenarios for achieving high performance fusion regimes. Fundamental investigations into fusion energy science find that anomalous dissipation of runaway electrons (RE) that arise following a disruption is likely due to interactions with RE-driven kinetic instabilities, some of which have been directly observed, opening a new avenue for RE energy dissipation using naturally excited waves. Dimensionless parameter scaling of intrinsic rotation and gyrokinetic simulations give a predicted ITER rotation profile with significant turbulence stabilization. Coherence imaging spectroscopy confirms near sonic flow throughout the divertor towards the target, which may account for the convection-dominated parallel heat flux. Core-boundary integration studies show that the small angle slot divertor achieves detachment at lower density and extends plasma cooling across the divertor target plate, which is essential for controlling heat flux and erosion. The Super H-mode regime has been extended to high plasma current (2.0 MA) and density to achieve very high pedestal pressures (similar to 30 kPa) and stored energy (3.2 MJ) with H-98y2 approximate to 1.6-2.4. In scenario work, the ITER baseline Q = 10 scenario with zero injected torque is found to have a fusion gain metric beta(TE) independent of current between q(95) = 2.8-3.7, and a lower limit of pedestal rotation for RMP ELM suppression has been found. In the wide pedestal QH-mode regime that exhibits improved performance and no ELMs, the start-up counter torque has been eliminated so that the entire discharge uses approximate to 0 injected torque and the operating space is more ITER-relevant. Finally, the high-beta(N) (<= 3.8) hybrid scenario has been extended to the high-density levels necessary for radiating divertor operation, achieving similar to 40% divertor heat flux reduction using either argon or neon with P-tot up to 15 MW.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2017. Vol. 59, no 11, article id 112002
Keywords [en]
fusion; plasma; tokamak; energy; DIII-D
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:kth:diva-272414DOI: 10.1088/1741-4326/ab024aISI: 000470808200002Scopus ID: 2-s2.0-85072634170OAI: oai:DiVA.org:kth-272414DiVA, id: diva2:1425587
Note

QC 20200421

Available from: 2020-04-21 Created: 2020-04-21 Last updated: 2020-05-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Frassinetti, Lorenzo

Search in DiVA

By author/editor
Frassinetti, Lorenzo
By organisation
Fusion Plasma Physics
In the same journal
Nuclear Fusion
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf