Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mechanistic Insights into the Regio‐ and Stereoselectivities of Testosterone and Dihydrotestosterone Hydroxylation Catalyzed by CYP3A4 and CYP19A1
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology.
East China University of Science and Technology.
East China University of Science and Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology.ORCID iD: 0000-0001-8198-9284
2020 (English)In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 26, p. 6214-6223Article in journal (Refereed) In press
Abstract [en]

The hydroxylation of nonreactive C−H bonds can be easily catalyzed by a variety of metalloenzymes, especially cytochrome P450s (P450s). The mechanism of P450 mediated hydroxylation has been intensively studied, both experimentally and theoretically. However, understanding the regio‐ and stereoselectivities of substrates hydroxylated by P450s remains a great challenge. Herein, we use a multi‐scale modeling approach to investigate the selectivity of testosterone (TES) and dihydrotestosterone (DHT) hydroxylation catalyzed by two important P450s, CYP3A4 and CYP19A1. For CYP3A4, two distinct binding modes for TES/DHT were predicted by dockings and molecular dynamics simulations, in which the experimentally identified sites of metabolism of TES/DHT can access to the catalytic center. The regio‐ and stereoselectivities of TES/DHT hydroxylation were further evaluated by quantum mechanical and ONIOM calculations. For CYP19A1, we found that sites 1β, 2β and 19 can access the catalytic center, with the intrinsic reactivity 2β>1β>19. However, our ONIOM calculations indicate that the hydroxylation is favored at site 19 for both TES and DHT, which is consistent with the experiments and reflects the importance of the catalytic environment in determining the selectivity. Our study unravels the mechanism underlying the selectivity of TES/DHT hydroxylation mediated by CYP3A4 and CYP19A1 and is helpful for understanding the selectivity of other substrates that are hydroxylated by P450s.

Place, publisher, year, edition, pages
Weinheim, Germany, 2020. Vol. 26, p. 6214-6223
Keywords [en]
C-H hydroxylation, density functional calculations, hydroxylation, molecular modeling, P450, steroids
National Category
Theoretical Chemistry
Research subject
Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-273352DOI: 10.1002/chem.201905272ISI: 000529008500001PubMedID: 32049373Scopus ID: 2-s2.0-85083973024OAI: oai:DiVA.org:kth-273352DiVA, id: diva2:1430329
Projects
Biology
Funder
Swedish National Infrastructure for Computing (SNIC), SNIC-2019-3-636
Note

QC 20200523

Available from: 2020-05-14 Created: 2020-05-14 Last updated: 2020-05-23Bibliographically approved
In thesis
1. Theoretical Studies of Drug-Metabolizing Cytochrome P450 Enzymes
Open this publication in new window or tab >>Theoretical Studies of Drug-Metabolizing Cytochrome P450 Enzymes
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The family of cytochrome P450 enzymes (P450s) belongs to one of the most important enzyme families in the human body. P450s are involved in the synthesis of endogenous compounds and metabolism of exogenous substances. In mammalian species, drug metabolizing P450s are anchored in the bilayer lipid membrane, which allows the enzymes to interact with other proteins and ligand molecules. A wealth of knowledge about the structures, functions, and mechanisms of P450s have been obtained from both experimental and theoretical studies. However, the mechanisms behind some experimental results, such as the regio- and stereoselectivity and structural flexibility are still elusive.

In this thesis, I present the work done in my doctoral studies, which was focused on the catalytic selectivity and structural flexibility of P450s. Multiple theoretical modeling approaches, such as homology modeling, molecular docking, molecular dynamics, quantum mechanics, and quantum mechanics/molecular mechanics, were applied in the studies. In papers I and II, the regio- and stereoselectivity of CYP4F2, CYP3A4, and CYP19A1 catalyzed C–H hydroxylation of different substrates were studied. The results indicate that the ligand reactivity and accessibility can be decisive for the regio- and stereoselectivity. However, which of them is more important is system-dependent. The quantum mechanics/molecular mechanics calculation results imply that the distribution of spin natural orbitals could be used for discriminating the roles of the reactivity and accessibility. In papers III and IV, the conformational dynamics of the open and closed structures of CYP2B4 and the ligand cooperativity phenomenon of midazolam metabolized by CYP3A4 were investigated using molecular dynamics simulations. From the simulation results, we identified the key residues for the conformational dynamics for the open-to-intermediate transition and found that the ligand cooperativity is also caused by the large flexibility of P450. The results also indicated that the homotropic cooperativity mainly occurs in the large and flexible productive site, rather than in the remote allosteric site.

Abstract [sv]

Familjen av cytokrom P450-enzymer (P450) tillhör en av de viktigaste enzymfamiljerna i människokroppen. P450 är involverade i syntesen av endogena föreningar och metabolism av exogena substanser. Hos däggdjursarter är läkemedelsmetaboliserande P450s bundna till lipidmembranet i cellerna, vilket påverkar P450s förmåga att interagera med andra proteiner och ligandmolekyler. En mängd kunskap om P450:s struktur, funktion och mekanism har erhållits från både experimentella och teoretiska studier. Däremot är mekanismerna bakom vissa experimentella resultat, såsom regio- och stereoselektivitet och strukturell flexibilitet fortfarande svårfångade.

 

I denna avhandling presenterar jag det arbete som gjorts under mina doktorandstudier, som fokuserade på den katalytiska selektiviteten och strukturella flexibiliteten hos P450. Flera teoretiska modelleringsmetoder, såsom homologimodellering, molekylär dockning, molekyldynamik, kvantmekanik och kvantmekanik/molekylmekanik har använts i studierna. I artikel I och II studerades regio- och stereoselektiviteten för CYP4F2, CYP3A4 och CYP19A1 C-H hydroxylering av olika substrat. Resultaten indikerar att ligandreaktiviteten och tillgängligheten kan vara avgörande för regio- och stereoselektiviteten. Vilken av dem som är viktigare är emellertid systemberoende. Resultaten av beräkningen med kvantmekanik/molekylmekanik innebär att fördelningen av naturliga spin orbitaler kan användas för att urskilja rollen för substratets reaktivitet och tillgänglighet. I artiklarna III och IV undersöktes konformationsdynamiken för de öppna och slutna strukturerna av CYP2B4 och ligandkooperativitetsfenomenet för midazolam metaboliserat genom CYP3A4 med hjälp av molekyldynamiksimuleringar. Från simuleringsresultaten identifierade vi nyckelaminosyrorna för konformationens dynamik för den öppen-till-intermediär-övergången och fann att ligandens kooperativitet också orsakas av den stora flexibiliteten hos P450. Resultaten indikerade även att den homotropa kooperativiteten huvudsakligen inträffar på det stora och flexibla produktiva sätet, snarare än på det avlägsna allosteriska sätet.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2020. p. 75
Series
TRITA-CBH-FOU ; 2020:29
Keywords
Cytochrome P450 enzymes, molecular dynamics, quantum chemistry, structural flexibililty, ONIOM
National Category
Natural Sciences
Research subject
Theoretical Chemistry and Biology
Identifiers
urn:nbn:se:kth:diva-273361 (URN)978-91-7873-546-4 (ISBN)
Public defence
2020-06-10, https://kth-se.zoom.us/webinar/register/WN_cYqhoHWeSuCidzUAeMPKYg, 10:00 (English)
Opponent
Supervisors
Note

QC 2020-05-20

Available from: 2020-05-20 Created: 2020-05-14 Last updated: 2020-05-28Bibliographically approved

Open Access in DiVA

fulltext(3442 kB)2 downloads
File information
File name FULLTEXT01.pdfFile size 3442 kBChecksum SHA-512
e47b800193fbe926ceb65ed7ce967217bdd8acf6de1e66ff6cd2f80302058dbee4788bf08452e6551abffb97af550d3cb1d09802e482102ae5249e626e32ddc4
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopushttps://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/chem.201905272

Authority records BETA

Li, JunhaoTu, Yaoquan

Search in DiVA

By author/editor
Li, JunhaoTu, Yaoquan
By organisation
Theoretical Chemistry and Biology
In the same journal
Chemistry - A European Journal
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 2 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 4 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf