Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A study of the Blasius wall jet
KTH, School of Engineering Sciences (SCI), Mechanics.
KTH, School of Engineering Sciences (SCI), Mechanics.ORCID iD: 0000-0001-7864-3071
2005 (English)In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 539, 313-347 p.Article in journal (Refereed) Published
Abstract [en]

A plane wall-jet flow is numerically investigated and compared to experiments. The measured base flow is matched to a boundary-layer solution developing from a coupled Blasius boundary layer and Blasius shear layer. Linear stability analysis is performed, revealing high instability of two-dimensional eigenmodes and non-modal streaks. The nonlinear stage of laminar-flow breakdown is studied with three-dimensional direct numerical simulations and experimentally visualized. In the direct numerical simulation, an investigation of the nonlinear interaction between two-dimensional waves and streaks is made. The role of subharmonic waves and pairing of vortex rollers is also investigated. It is demonstrated that the streaks play an important role in the breakdown process, where their growth is transformed from algebraic to exponential as they become part of the secondary instability of the two-dimensional waves. In the presence of streaks, pairing is suppressed and breakdown to turbulence is enhanced.

Place, publisher, year, edition, pages
2005. Vol. 539, 313-347 p.
Keyword [en]
direct numerical-simulation, boundary-layer-flow, plane mixing layers, turbulent transition, instability, stability, suction, disturbances, receptivity, mechanism
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-8901DOI: 10.1017/S0022112005005628ISI: 000232413800013Scopus ID: 2-s2.0-33644596059OAI: oai:DiVA.org:kth-8901DiVA: diva2:14382
Note
QC 20101021Available from: 2005-12-08 Created: 2005-12-08 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Numerical studies of transtion in wall-bounded flows
Open this publication in new window or tab >>Numerical studies of transtion in wall-bounded flows
2005 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Disturbances introduced in wall-bounded flows can grow and lead to transition from laminar to turbulent flow. In order to reduce losses or enhance mixing in energy systems, a fundamental understanding of the flow stability and transition mechanism is important. In the present thesis, the stability, transition mechanism and early turbulent evolution of wall-bounded flows are studied. The stability is investigated by means of linear stability equations and the transition mechanism and turbulence are studied using direct numerical simulations. Three base flows are considered, the Falkner-Skan boundary layer, boundary layers subjected to wall suction and the Blasius wall jet. The stability with respect to the exponential growth of waves and the algebraic growth of optimal streaks is studied for the Falkner-Skan boundary layer. For the algebraic growth, the optimal initial location, where the optimal disturbance is introduced in the boundary layer, is found to move downstream with decreased pressure gradient. A unified transition prediction method incorporating the influences of pressure gradient and free-stream turbulence is suggested. The algebraic growth of streaks in boundary layers subjected to wall suction is calculated. It is found that the spatial analysis gives larger optimal growth than temporal theory. Furthermore, it is found that the optimal growth is larger if the suction begins a distance downstream of the leading edge. Thresholds for transition of periodic and localized disturbances as well as the spreading of turbulent spots in the asymptotic suction boundary layer are investigated for Reynolds number Re=500, 800 and 1200 based on the displacement thickness and the free-stream velocity. It is found that the threshold amplitude scales like Re^-1.05 for transition initiated by streamwise vortices and random noise, like Re^-1.3 for oblique transition and like Re^-1.5 for the localized disturbance. The turbulent spot is found to take a bullet-shaped form that becomes more distinct and increases its spreading rate for higher Reynolds number. The Blasius wall jet is matched to the measured flow in an experimental wall-jet facility. Both the linear and nonlinear regime of introduced waves and streaks are investigated and compared to measurements. It is demonstrated that the streaks play an important role in the breakdown process where they suppress pairing and enhance breakdown to turbulence. Furthermore, statistics from the early turbulent regime are analyzed and reveal a reasonable self-similar behavior, which is most pronounced with inner scaling in the near-wall region.

Place, publisher, year, edition, pages
Stockholm: KTH, 2005. viii, 48 p.
Series
Trita-MEK, ISSN 0348-467X ; 2005:17
Keyword
boundary layer, suction, wall jet, streaks, waves, periodic disturbance, localized disturbance, turbulent spot, algebraic growth, exponential growth, stability, transition thresholds, transition prediction, PSE, DNS
National Category
Fluid Mechanics and Acoustics
Identifiers
urn:nbn:se:kth:diva-546 (URN)
Public defence
2005-12-16, F3, F-huset, Lindstedsvägen 26, Stockholm, 10:15
Opponent
Supervisors
Note
QC 20101025Available from: 2005-12-08 Created: 2005-12-08 Last updated: 2010-10-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Henningson, Dan

Search in DiVA

By author/editor
Levin, OriLöfdahl, LennartHenningson, Dan
By organisation
Mechanics
In the same journal
Journal of Fluid Mechanics
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 96 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf