Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the effects of the packet size distribution on the packet loss process
KTH, School of Electrical Engineering (EES).ORCID iD: 0000-0002-4876-0223
KTH, School of Electrical Engineering (EES).ORCID iD: 0000-0002-2764-8099
KTH, School of Electrical Engineering (EES).ORCID iD: 0000-0002-3704-1338
2006 (English)In: Telecommunications Systems, ISSN 1018-4864, E-ISSN 1572-9451, Vol. 32, no 1, 31-53 p.Article in journal (Refereed) Published
Abstract [en]

Real-time multimedia applications have to use forward error correction (FEC) anderror concealment techniques to cope with losses in today's best-effort Internet. The efficiency of these solutions is known however to depend on the correlation between losses in the media stream. In this paper we investigate how the packet size distribution affects the packet loss process, that is, the distribution of the number of lost packets in a block, the related FEC performance and the average loss run length. We present mathematical models for the loss process of the MMPP+M/D/1/K and the MMPP+M/M/1/K queues; we validate the models via simulations, and compare the results to simulation results with an MPEG-4 coded video trace. We conclude that the deterministic packet size distribution (PSD) not only results in lower stationary loss probability than the exponential one, but also gives a less correlated loss process, both at a particular average link load and at a particular stationary loss probability as seen by the media stream.Our results show that for applications that can only measure the packet loss probability, the effects of the PSD on FEC performance are higher in access networks, where a single multimedia stream might affect the multiplexing behavior. Our results show that the effects of the PSD on FEC performance are higher in access networks, where a single multimedia stream might affect the multiplexing behavior and thus can improve the queuing performance by decreasing the variance of its PSD.

Place, publisher, year, edition, pages
2006. Vol. 32, no 1, 31-53 p.
Keyword [en]
forward error correction, loss run length, performance evaluation, Markov modulated Poisson process
National Category
Telecommunications
Identifiers
URN: urn:nbn:se:kth:diva-9093DOI: 10.1007/s11235-006-8201-3ISI: 000237826500002Scopus ID: 2-s2.0-33744546796OAI: oai:DiVA.org:kth-9093DiVA: diva2:14655
Note
QC 20100924. Uppdaterad från Accepted till Published (20100924).Available from: 2006-02-13 Created: 2006-02-13 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Internet Video Transmission
Open this publication in new window or tab >>Internet Video Transmission
2006 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

The Internet has rapidly evolved from being a scientific experiment to a commercial network connecting millions of hosts that carries traffic generated by a large amount of applications with diverse requirements. Its architecture was however designed to enable efficient point-to-point delivery of bulk data, and can not provide statistical guarantees on the timely delivery of delay sensitive data such as streaming and real-time multimedia. Thus, applications that require low loss probabilities in today's Internet have to use some end-to-end error recovery mechanism. For delay sensitive applications the introduced latency by the applied schemes has to be low as well. Traffic control functions such as delay limited shaping and forward error correction (FEC), and multiple description coding (MDC) have been proposed for variable bitrate video. Their major drawback is, however, that it is difficult to predict their efficiency, as it depends on many factors like the characteristics of the stream itself, the characteristics of the traffic in the network and the network parameters. Consequently, it is difficult to decide which control mechanisms to employ, how to combine them and to choose the right parameters (e.g. block length, code rate) for optimal performance.

In this thesis we present results on the efficiency of traffic control functions and MDC for video transmission based on mathematical models and simulations. We investigate the efficiency of delay limited traffic shaping and the trade-offs in the joint use of traffic shaping and forward error correction. We identify the packet size distribution of the traffic in the network as an additional factor that may influence the efficiency of FEC, and present a thorough analysis of its possible effects. We present an analytical comparison of MDC versus media-dependent FEC and media-independent FEC, and based on the results we conclude that MDC is a promising error control solution for multimedia communications with very strict delay bounds in an environment with bursty losses. We combine the analytical results with traces from measurements performed on the Internet to evaluate how efficient these error control schemes are under real loss patterns. We compare the efficiency of MDC and media-dependent FEC in the presence of channel estimation errors; we propose a new rate allocation method, which is robust to mis-estimations of the channel state and which improves error resilience on non-stationary channels. Finally we present an analytical model of the performance of an end-point-based multimedia streaming architecture based on multiple distribution trees and forward error correction, and analyze the behavior of the architecture for a large number of nodes.

Place, publisher, year, edition, pages
Stockholm: KTH, 2006
Keyword
Traffic control, MDC, FEC, Multicast streaming, Queuing theory
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-623 (URN)91-7178-256-7 (ISBN)
Public defence
2006-02-28, F3, Lindstedtsvägen 26, KTH,Stockholm, 10:00
Opponent
Supervisors
Note
QC 20101115Available from: 2006-02-13 Created: 2006-02-13 Last updated: 2010-11-15

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Dán, GyörgyFodor, ViktóriaKarlsson, Gunnar

Search in DiVA

By author/editor
Dán, GyörgyFodor, ViktóriaKarlsson, Gunnar
By organisation
School of Electrical Engineering (EES)
In the same journal
Telecommunications Systems
Telecommunications

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 96 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf