Change search
ReferencesLink to record
Permanent link

Direct link
Simulation and Optimization of SiC Field Effect Transistors
KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.
2004 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Silicon Carbide (SiC) is a wide band-gap semiconductor material with excel-lent material properties for high frequency, high power and high temperature elec-tronics. In this work different SiC field-effect transistors have been studied using theoretical methods, with the focus on both the devices and the methods used. The rapid miniaturization of commercial devices demands better physical models than the drift-diffusion and hydrodynamic models most commonly used at present.

The Monte Carlo method is the most accurate physical methods available and has been used in this work to study the performance in short-channel SiC field-effect devices. The drawback of the Monte-Carlo method is the computational power required and it is thus not well suited for device design where the layout requires to be optimized for best device performance. One approach to reduce the simulation time in the Monte Carlo method is to use a time-domain drift-diffusion model in contact and bulk regions of the device. In this work, a time-domain drift-diffusion model is implemented and verified against commercial tools and would be suitable for inclusion in the Monte-Carlo device simulator framework.

Device optimization is traditionally performed by hand, changing device pa-rameters until sufficient performance is achieved. This is very time consuming work without any guarantee of achieving an optimal layout. In this work a tool is developed, which automatically changes device layout until optimal device per-formance is achieved. Device optimization requires hundreds of device simulations and thus it is essential that computationally efficient methods are used. One impor-tant physical process for RF power devices is self heating. Self heating can be fairly accurately modeled in two dimensions but this will greatly reduce the computa-tional speed. For realistic influence self heating must be studied in three dimensions and a method is developed using a combination of 2D electrical and 3D thermal simulations. The accuracy is much improved by using the proposed method in comparison to a 2D coupled electro/thermal simulation and at the same time offers greater efficiency. Linearity is another very important issue for RF power devices for telecommunication applications. A method to predict the linearity is imple-mented using nonlinear circuit simulation of the active device and neighboring passive elements.

Place, publisher, year, edition, pages
Kista: Mikroelektronik och informationsteknik , 2004. , xviii, 80 p.
Trita-EKT, ISSN 1650-8599 ; 2004:8
Keyword [en]
Electronics, SiC, Device simulation, RF, power, MESFET
Keyword [sv]
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
URN: urn:nbn:se:kth:diva-81OAI: diva2:14791
Public defence
2004-12-14, Sal O111, Mitthägskolan, Sundsvall, 13:15
Available from: 2004-12-21 Created: 2004-12-21 Last updated: 2012-03-19

Open Access in DiVA

fulltext(1371 kB)12028 downloads
File information
File name FULLTEXT01.pdfFile size 1371 kBChecksum MD5
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Bertilsson, Kent
By organisation
Microelectronics and Information Technology, IMIT
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 12028 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 799 hits
ReferencesLink to record
Permanent link

Direct link