Change search
ReferencesLink to record
Permanent link

Direct link
Electro-thermal simulations and measurements of silicon carbide power transistors
KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.
2004 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

The temperature dependent electrical characteristics of silicon carbide power transistors – 4H-SiC metal semiconductor field-effect transistors (MESFETs) and 4H-SiC bipolar junction transistors (BJTs) have been investigated through simulation and experimental approaches. Junction temperatures and temperature distributions in devices under large power densities have been estimated.

The DC and RF performance of 4H-SiC RF Power MESFETs have been studied through two-dimensional electro-thermal simulations using commercial software MEDICI and ISE. The simulated characteristics of the transistors were compared with the measurement results. Performance degradation of transistors under self-heating and high operating temperatures have been analyzed in terms of gate and drain characteristics, power density, high frequency current gain and power gain. 3D thermal simulations have been performed for single and multi-finger MESFETs and the simulated junction temperatures and temperature profiles were compared with the results from electro-thermal simulations. The reduction in drain current caused by self-heating was found to be more prominent for transistors with more fingers and it imposes a limitation on both the output power and the power density (in W/mm) of multi-fingered large area devices. Thermal issues for design of high power multi-fingered SiC MESFETs were also investigated. A couple of useful ways to reduce the self-heating effects were discussed. Trap-induced performance instabilities of the devices were analyzed by carrying out DC, transient, and pulse measurements at room and elevated temperatures.

Electrical characteristics of 4H-SiC BJTs have been measured. A reduction in current gain at elevated temperatures was observed. Based on the collector current-voltage diagram measured at three different ambient temperatures the junction temperature was extracted using the assumption that the current gain only depends on the temperature. Temperature measurements have been carried out for SiC BJTs. Thermal images of a device under operation were recorded using an infrared camera. 3D thermal simulations were conducted using FEMLAB. Both the simulations and the measurement showed a significant temperature increase in the vicinity of the device when operated at high power densities, thus causing the decrease of the DC current gain. The junction temperatures obtained from the thermal imaging, simulation and extraction agree well.

Place, publisher, year, edition, pages
Kista: Mikroelektronik och informationsteknik , 2004. , ix, 60 p.
Trita-EKT, ISSN 1650-8599 ; 2004:7
Keyword [en]
Electronics, silicon carbide, power device, metal semiconductor field-effect transistor, bipolar junction transistor, electro-thermal simulation
Keyword [sv]
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
URN: urn:nbn:se:kth:diva-86OAI: diva2:14846
Public defence
2004-12-16, Sal C1, KTH-Electrum, Isafjordsgatan 22, Kista, 10:15
Available from: 2004-12-16 Created: 2004-12-16 Last updated: 2012-03-21

Open Access in DiVA

fulltext(1459 kB)5035 downloads
File information
File name FULLTEXT01.pdfFile size 1459 kBChecksum SHA-1
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Liu, Wei
By organisation
Microelectronics and Information Technology, IMIT
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 5035 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 1531 hits
ReferencesLink to record
Permanent link

Direct link