kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bias and imprecision in posture percentile variables estimated from short exposure samples
2012 (English)In: BMC Medical Research Methodology, E-ISSN 1471-2288, Vol. 12, no 1, p. 1-14Article in journal (Refereed) Published
Abstract [en]

Background

Upper arm postures are believed to be an important risk determinant for musculoskeletal disorder development in the neck and shoulders. The 10th and 90th percentiles of the angular elevation distribution have been reported in many studies as measures of neutral and extreme postural exposures, and variation has been quantified by the 10th-90th percentile range. Further, the 50th percentile is commonly reported as a measure of "average" exposure. These four variables have been estimated using samples of observed or directly measured postures, typically using sampling durations between 5 and 120 min.

Methods

The present study examined the statistical properties of estimated full-shift values of the 10th, 50th and 90th percentile and the 10th-90th percentile range of right upper arm elevation obtained from samples of seven different durations, ranging from 5 to 240 min. The sampling strategies were realized by simulation, using a parent data set of 73 full-shift, continuous inclinometer recordings among hairdressers. For each shift, sampling duration and exposure variable, the mean, standard deviation and sample dispersion limits (2.5% and 97.5%) of all possible sample estimates obtained at one minute intervals were calculated and compared to the true full-shift exposure value.

Results

Estimates of the 10th percentile proved to be upward biased with limited sampling, and those of the 90th percentile and the percentile range, downward biased. The 50th percentile was also slightly upwards biased. For all variables, bias was more severe with shorter sampling durations, and it correlated significantly with the true full-shift value for the 10th and 90th percentiles and the percentile range. As expected, shorter samples led to decreased precision of the estimate; sample standard deviations correlated strongly with true full-shift exposure values.

Conclusions

The documented risk of pronounced bias and low precision of percentile estimates obtained from short posture samples presents a concern in ergonomics research and practice, and suggests that alternative, unbiased exposure variables should be considered if data collection resources are restricted.

Place, publisher, year, edition, pages
BioMed Central , 2012. Vol. 12, no 1, p. 1-14
National Category
Production Engineering, Human Work Science and Ergonomics
Identifiers
URN: urn:nbn:se:kth:diva-297071DOI: 10.1186/1471-2288-12-36ISI: 000304421400001PubMedID: 22443348OAI: oai:DiVA.org:kth-297071DiVA, id: diva2:1565144
Note

QC 20230731

Available from: 2021-06-13 Created: 2021-06-13 Last updated: 2024-03-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Forsman, Mikael

Search in DiVA

By author/editor
Forsman, Mikael
In the same journal
BMC Medical Research Methodology
Production Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 32 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf