Open this publication in new window or tab >>2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Reliable operation of flexible AC transmission systems (FACTS) and high voltage direct current (HVDC) systems is necessary for stable operation of modern power grids. Converters used in FACTS and HVDC applications that are designed with high reliability constraints may still experience stoppages as a result of component failures. This may be a result of process variations in component manufacturing that can lead to over-stressing and failure of strategic components. Consequently, online estimation of parameters that provide information about the state-of-health (SoH) of critical components in these converters is crucial. This approach can help avoid unplanned stoppages and increase their availability.
Cascaded H-bridge converters (CHBCs) and modular multilevel converters (MMCs) are currently considered the state-of-the-art solutions for high-voltage and high-power conversion in both AC and DC applications. This thesis provides various solutions for online condition monitoring of submodule capacitors and power semiconductors, which are among the most critical components of CHBCs and MMCs. Moreover, novel methods are proposed to decouple the effect of temperature on health-indicating parameters. The proposed condition monitoring methods are broadly categorized into time-domain and frequency-domain estimation techniques. Both methods are thoroughly analyzed and the advantages and disadvantages of each method are explained. Furthermore, the robustness of the proposed solutions are shown under various load conditions, and in the presence of measurement uncertainties such as noise.
The thesis also presents adaptive online methods to reduce the voltage stress on components estimated to be health-degraded. Stress reduction is achieved through modified modulation schemes, where the capacitor voltage of health-degraded submodules is reduced. The proposed adaptive control is shown to have a minor effect on the quality of the generated output current.
Finally, the thesis proposes novel semiconductor modules that comprise series-connected and parallel-connected semiconductor devices. The proposed solutions are intended to simplify the protection system and potentially provide fault-ride-though functionality in the event of single device failures in the module. The main challenge in the proposed design is the voltage balancing of series-connected devices. Two different active snubber circuits for overvoltage protection of each device are proposed, where either an active closed-loop-controlled design or a sensorless self-triggered design can be used to protect the series-connected devices against overvoltages.
The different solutions presented in this thesis have been validated through a variety of approaches, including analytical methods, time-domain simulations, experimental testing, or a combination of these.
Abstract [sv]
Tillförlitlig drift av flexibla växelspänningstransmissionsystem (FACTS) och högspänd likströmsöverföring (HVDC) är nödvändiga för stabil drift av moderna kraftnät. Effektomvandlare som har tagits fram med höga tillförlitlighetskrav kan fortfarande uppleva driftstörningar som resultat av komponentfel. Dessa är inte konstruktionsfel, utan snarare ett resultat av processvariationer i komponenttillverkning som kan leda till överbelastning och haverier i strategiska komponenter. Följaktligen kan online-estimering av parametrar som ger information om hälsotillståndet (SOH) för viktiga komponenter i omvandlaren vara behjälpliga i att undvika oplanerade driftstörningar och öka tillgängligheten.
Så kallade Cascaded H-bridge converters (CHBC) och Modular Multilevel Converters (MMC) anses för närvarande vara de mest avancerade lösningarna för högspänd högeffektomvandling i både växelspännings- och likspänningstillämpningar. Denna avhandling presenterar olika lösningar för online-övervakning av hälsotillstånd för submodulkondensatorer och effekthalvledarkomponenter, vilka räknas bland de mest kritiska komponenterna i CHBC- och MMC- tillämpningar. Dessutom föreslås nya metoder att separera temperaturrelaterade variationer av hälsoparametrar från hälsorelaterade variationer av dessa parametrar. De föreslagna metoderna för tillståndsövervakning kategoriseras allmänt som tidsbaserade och frekvensbaserade tekniker. Båda metoderna analyseras noggrant och fördelarna och nackdelarna med respektive metod belyses. Vidare belyses robustheten hos de föreslagna lösningarna vid olika driftförhållanden och under inverkan av mätosäkerheter som brus.
Avhandlingen presenterar också adaptiva online-metoder för att minska spänningspåkänningen av komponenter som antas vara hälsodegraderade. Reduktion av påkänningar uppnås genom ett modifierat moduleringsförfarande, där kondensatorspänningen hos hälsodegraderade submoduler reduceras. Denna adaptiv styrning av submodulkondensatorernas spänning visar sig ha en obetydlig inverkan på kvaliteten av den genererade utgångsströmmen.
Slutligen föreslås nya effekthalvledarmoduler som nyttjar såväl serie- som parallellkopplade halvledarenheter. De föreslagna lösningarna syftar till att förenkla skyddssystemet och potentiellt erbjuda feltålighet vid enhetsfel i modulen. Den största utmaningen för den föreslagna konstruktionen är spänningsbalanseringen av de seriekopplade enheterna. Två olika aktiva snubbersystem för överspänningsskydd för varje enhet föreslås. Det ena är ett återkopplat reglersystem och det andra är ett sensorlöst självinitierande system.
De olika lösningarna som presenteras i denna avhandling har validerats genom en rad olika tillvägagångssätt, inklusive analytiska metoder, tidsdomänsimuleringar, experiment eller en kombination av dessa.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. x, 83
Series
TRITA-EECS-AVL ; 2025:12
Keywords
Cascaded H-Bridge Converters (CHBC), Condition Monitoring, Flexible AC Transmission Systems (FACTS), High Voltage Direct Current (HVDC), Modular Multilevel Converters (MMC), Online Estimation, Reliability, Series-Connected Semiconductor Devices, State-of-Health (SOH), Submodule Design, Kaskadkopplade H-bryggeomvandlare (CHBC), tillståndsestimering, flexibla växelströmstransmissionssystem (FATS), högspänd likströmstransmission (HVDC), modulära multinivå-omvandlare (MMC), online-estimering, tillförlitlighet, seriekopplade effekthalvledarkomponenter, State-of-Health (SOH), submodulkonstruktion
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-358852 (URN)978-91-8106-168-0 (ISBN)
Public defence
2025-02-07, Kollegiesalen, Brinellvägen 6, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20250122
2025-01-222025-01-222025-01-27Bibliographically approved