As a single atom Pd outperforms Pt as the most active co-catalyst for photocatalytic H-2 evolutionShow others and affiliations
2021 (English)In: ISCIENCE, ISSN 2589-0042, Vol. 24, no 8, article id 102938Article in journal (Refereed) Published
Abstract [en]
Here, we evaluate three different noble metal co-catalysts (Pd, Pt, and Au) that are present as single atoms (SAs) on the classic benchmark photocatalyst, TiO2. To trap the single atoms on the surface, we introduced controlled surface vacancies (Ti3+-Ov) on anatase TiO2 nanosheets by a thermal reduction treatment. After anchoring identical loadings of single atoms of Pd, Pt, and Au, we measure the photocatalytic H-2 generation rate and compare it to the classic nanoparticle co-catalysts on the nanosheets. While nanoparticles yield the well-established the hydrogen evolution reaction activity sequence (Pt > Pd > Au), for the single atom form, Pd radically outperforms Pt and Au. Based on density functional theory (DFT), we ascribe this unusual photocatalytic co-catalyst sequence to the nature of the charge localization on the noble metal SAs embedded in the TiO2 surface.
Place, publisher, year, edition, pages
Elsevier BV , 2021. Vol. 24, no 8, article id 102938
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-301827DOI: 10.1016/j.isci.2021.102938ISI: 000686897200116PubMedID: 34430818Scopus ID: 2-s2.0-85112259006OAI: oai:DiVA.org:kth-301827DiVA, id: diva2:1594226
Note
QC 20210915
2021-09-152021-09-152022-06-25Bibliographically approved