kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Applying Machine Learning for Adaptive Scheduling and Execution of Material Handling in Smart Production Logistics
KTH, School of Industrial Engineering and Management (ITM), Sustainable production development, Avancerad underhållsteknik och produktionslogistik.ORCID iD: 0000-0003-0798-0753
KTH, School of Industrial Engineering and Management (ITM), Sustainable production development, Avancerad underhållsteknik och produktionslogistik.ORCID iD: 0000-0003-1878-773x
KTH, School of Industrial Engineering and Management (ITM), Sustainable production development, Avancerad underhållsteknik och produktionslogistik.ORCID iD: 0000-0001-7935-8811
2021 (English)In: Proceedings, Part V, Advances in ProductionManagement Systems Artificial Intelligence for Sustainable and Resilient Production Systems IFIP WG 5.7 International Conference, APMS 2021, Nantes, France, September 5–9, 2021 / [ed] Dolgui A., Bernard A., Lemoine D., von Cieminski G., Romero D., Springer Nature , 2021Conference paper, Published paper (Refereed)
Abstract [en]

Combining Smart Production Logistics (SPL) and Machine Learning(ML) for adaptive scheduling and execution of material handling may be criticalfor enhancing manufacturing competitiveness. SPL and ML may help identify,adapt, and respond to scheduling changes originating from disturbances in andenhance the operational performance of material handling. However, the literaturecombining SPL and ML for material handling is scarce. Accordingly, thepurpose of this study is to propose a framework applying ML for the dynamicscheduling and execution of material handling tasks in SPL. The study proposesan architecture including Cyber Physical System (CPS) and Internet of Things(IoT) applying ML for the dynamic scheduling and execution of material handling.Then, we describe the ML inputs, interactions, and work flow for realizingthe proposed architecture. Finally, the study presents digital services in a simulationenvironment exemplifying the dynamic scheduling and execution ofmaterial handling in SPL. The study concludes with essential implications to themanufacturing industry.

Place, publisher, year, edition, pages
Springer Nature , 2021.
Series
IFIP Advances in Information and Communication Technology, ISSN 1868-4238, E-ISSN 1868-422X ; 634
Keywords [en]
Smart production logistics, Adaptive scheduling, Machine learning
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
Industrial Engineering and Management
Identifiers
URN: urn:nbn:se:kth:diva-301954DOI: 10.1007/978-3-030-85914-5_4ISI: 000775555100004Scopus ID: 2-s2.0-85115319963OAI: oai:DiVA.org:kth-301954DiVA, id: diva2:1594386
Conference
IFIP WG 5.7 International Conference, APMS 2021 Nantes, France, September 5–9, 2021
Projects
C-PALs
Funder
Vinnova, 2018-03333
Note

Part of proceedings ISBN 978-3-030-85913-8

QC 20210916

Available from: 2021-09-15 Created: 2021-09-15 Last updated: 2022-09-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Flores-García, ErikJeong, YongkukWiktorsson, Magnus

Search in DiVA

By author/editor
Flores-García, ErikJeong, YongkukWiktorsson, Magnus
By organisation
Avancerad underhållsteknik och produktionslogistik
Production Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 145 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf