kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electrochemical performance of poly(arylene piperidinium) membranes and ionomers in anion exchange membrane fuel cells
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0002-7919-8835
Lund Univ, Dept Chem, Polymer & Mat Chem, SE-22100 Lund, Sweden..
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0001-9203-9313
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0002-2268-5042
Show others and affiliations
2021 (English)In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 507, article id 230287Article in journal (Refereed) Published
Abstract [en]

Awakening interest in anion exchange membrane fuel cells (AEMFC) for low temperature applications has led to an increased demand for high-performing polymers stable under alkaline conditions. In this study a poly(p-terphenylene piperidinium)-based membrane and ionomer was synthesized and applied in membrane electrode assemblies (MEAs), with porous gas-diffusion electrodes based on Pt catalysts supported by VULCAN (R) and high surface area carbon, respectively. The MEAs were evaluated in AEMFC single-cell tests. In order to identify specific beneficial characteristics of the polymer, the results were compared to reference tests using a commercial Aemion T-polymer. Steady-state polarisation performance measurements were carried out as well as electrode characterisations via cyclic voltammetry and electrochemical impedance spectroscopy, in addition to ex-situ characterisation of the polymer and the membrane electrode assemblies. Poly(p-terphenylene piperidinium)based (PAP) membranes showed great potential with an in-situ measured average ohmic resistance of 0.09 Omega cm(2). Mass transport limitations at higher current densities were observed for high surface area carbon electrodes, leading to an overall higher performance with the use of VULCAN (R). Properties of the ionomer related to water uptake capabilities were observed to inhibit performance as well. The higher water uptake of PAP-based ionomers appears to be a key property for increasing electrode performance.

Place, publisher, year, edition, pages
Elsevier BV , 2021. Vol. 507, article id 230287
Keywords [en]
Fuel cell, Anion exchange membrane, Anion exchange ionomer, Poly(arylene piperidinium), Single-cell test, Electrode structure
National Category
Polymer Technologies
Identifiers
URN: urn:nbn:se:kth:diva-301815DOI: 10.1016/j.jpowsour.2021.230287ISI: 000685093900003Scopus ID: 2-s2.0-85111061755OAI: oai:DiVA.org:kth-301815DiVA, id: diva2:1594762
Note

QC 20220301

Available from: 2021-09-16 Created: 2021-09-16 Last updated: 2023-12-15Bibliographically approved
In thesis
1. Electrochemical characterization of materials for next generation polymer electrolyte fuel cells
Open this publication in new window or tab >>Electrochemical characterization of materials for next generation polymer electrolyte fuel cells
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Polymer electrolyte fuel cells occupy a key position in implementing the hydrogen economy on a global scale. However, assessments of cost, availability and sustainability of materials currently used to manufacture state-of-the-art fuel cell stacks have given cause for concern. Platinum and platinum-group metals are prohibitively expensive and of low abundance. The benchmark ion-conductive polymer NafionTM and related perfluorosulfonic acid-based polymers are difficult to synthesize and environmentally persistent to extreme degrees. Graphitic and carbon composite bipolar plates are unsuitable for mass production and have low recycling potential. In the compiled works, alternative materials were evaluated both for the acidic and alkaline variations of polymer electrolyte fuel cells. Electrochemical characterization was carried out in single cell tests with a focus on finding the limitations in terms of ohmic, charge transfer and transport resistances in the cell, through polarization and impedance measurements.

Carbon coated stainless steel bipolar plates were tested operando in a proton exchange membrane fuel cell (PEMFC) under realistic conditions based on the New European Drive Cycle. Observed trace metal contamination of the MEA was linked to metal dissolution from coating defects caused by manufacturing (Paper I). A theoretical understanding of observed metal dissolution was confirmed experimentally and a concept for preventing metal dissolution was developed for PEMFC bipolar plates (Paper II). The developed concept was extended to uncoated stainless steel bipolar plates and tested successfully for three stainless steel types in operando PEMFC (Paper III)

Anion exchange polymers based on poly(arylene piperidinium) (PAP) were tested as both membranes and ionomers in a comparative study with a commercial reference material, showing higher performance and the significance of ionomer-carbon support interactions (Paper IV). PAP-based ionomers with varying ion exchange capacities were studied to optimize electrodes in anion exchange membrane fuel cells (AEMFC). A combination of high ion exchange capacity ionomer on both cathode and anode was best performing, linked to small water transport resistance in cathode and increased kinetic contribution of the anode HOR (Paper V). The effects of modifying the catalyst layer through the introduction of crosslinked PAP particles were studied in operando AEMFCs. A positive impact on charge transfer and diffusion resistances in electrodes containing particles could be observed. (Paper VI).

Silver nanoparticles were used as catalyst material in the cathode of previously optimized membrane electrode assemblies in AEMFC. The results showed promising performance compared to platinum electrodes based on monetary and sustainability considerations, but also challenges regarding catalyst stability and detrimental silver-ionomer interactions. (Paper VII).

Abstract [sv]

Bränsleceller med polymerelektrolyt har en avgörande roll för implementering av vätgasekonomin globalt. Faktorer som kostnad, tillgänglighet och miljöpåverkan av material som för närvarande används i moderna bränsleceller är dock ett bekymmer. Platina och platinagruppmetaller är dyra och sällsynt förekommande. Den dominerande jonledande polymeren NafionTM och liknande perfluorsulfonsyra-baserade polymerer är krävande att syntetisera och svårnedbrytbara i naturen. Bipolära plattor av grafit och kolkomposit är olämpliga för massproduktion och har låg återvinningspotential. I avhandlingens sammanställda arbeten utvärderades alternativa material både för de sura (PEMFC) och de alkaliska (AEMFC) varianterna av polymerelektrolytbränsleceller. Elektrokemisk karakterisering med polarisations- och impedansmätningar genomfördes i enkelceller för att studera begränsningarna vad gäller laddningsöverföring samt ohmska och transportrelaterade förluster i cellen.

Kolbelagda bipolära plattor av rostfritt stål undersöktes in operando i en PEMFC under realistiska förhållanden baserade på en standardiserad europeisk driftcykel. Spår av metalljoner i cellkomponenterna observerades efter test och kopplades till metallupplösning från defekter orsakade vid tillverkningen (Paper I). Upplösningen visade sig bero på potentialgradienter som uppstod vid förändringar i gassammansättningen och kunde undvikas med bättre reglerade flöden (Paper II). Tre typer av rostfritt stål utan kolbeläggning jämfördes i operando PEMFC med belagda bipolära plattor Inte i något av fallen påvisades någon metalljonupplösning(Paper III).

Anjonbytarpolymerer baserade på poly(arylenpiperidinium) (PAP) undersöktes både som membran och jonomer. I en jämförande studie med ett kommersiellt Aemion-material visade PAP högre prestanda. Vidare visade studien att interaktionen mellan jonomer och bärarkol hade betydelse för prestandan (Paper IV). PAP-baserade jonomerer med varierande jonbyteskapacitet studerades för att optimera elektroder i AEMFC. En kombination med jonomer med hög jonbyteskapacitet på både katod och anod var bäst, och kopplad till litet vattentransportmotstånd i katoden och ökat kinetiskt bidrag från anodreaktionen (Paper V). Effekterna av att modifiera katalysatorskiktet genom införandet av tvärbundna PAP-partiklar studerades i operando AEMFCs. En positiv inverkan på laddningsöverföring och diffusionsmotstånd i elektroder som innehåller partiklar kunde observeras. (Paper VI). 

Slutligen användes silvernanopartiklar som katodkatalysator i AEMFC med elektroder optimerade med PAP. Resultaten visade lovande prestanda jämfört med platinaelektroder, utifrån kostnads- och hållbarhetsaspekter, men också utmaningar gällande katalysatorns stabilitet och interaktionen mellan silver och jonomer. (Paper VII).

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 114
Series
TRITA-CBH-FOU ; 2023:59
Keywords
Polymer electrolyte fuel cells, PEMFC, AEMFC, bipolar plates, corrosion, poly(arylene piperidinium), ionomer, electrode structure, silver nanoparticles, oxygen reduction reaction, Polymerelektrolytbränsleceller, PEMFC, AEMFC, bipolära plattor, korrosion, poly(arylenpiperidinium), jonomer, elektrodstruktur, silvernanopartiklar, syrgasreduktionsreaktion
National Category
Chemical Engineering
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-340853 (URN)978-91-8040-794-6 (ISBN)
Public defence
2024-01-26, F3 (Flodis), Lindstedtsvägen 26, KTH, https://kth-se.zoom.us/meeting/register/u5wlcOGuqTwiGNXzKR_gDsNo2rokLVn_pyFk, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20231218

Available from: 2023-12-18 Created: 2023-12-15 Last updated: 2024-01-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Novalin, TimonLindbergh, GöranLagergren, CarinaLindström, Rakel

Search in DiVA

By author/editor
Novalin, TimonLindbergh, GöranLagergren, CarinaLindström, Rakel
By organisation
Applied Electrochemistry
In the same journal
Journal of Power Sources
Polymer Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 441 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf